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Motivation and Background

▶ In scientific computing and machine learning, solving
large-scale linear systems Ax = f and eigenvalue problems
Ax = λx is fundamental.

▶ Classical algorithms such as GMRES (for linear systems) and
Rayleigh–Ritz / eigs (for eigenvalue problems) are accurate
but costly for large n.

▶ Randomized algorithms (e.g., sketching) enable fast
dimension reduction, making traditional solvers scalable.

Goal: Develop projection-based solvers accelerated by random
sketching, retaining accuracy while reducing cost.



Sketching: A Primer

▶ Sketching: project a high-dimensional problem onto a
lower-dimensional subspace using a random matrix.

▶ Let S ∈ Cs×n be a random sketching matrix with s≪ n, such
that:

ES
[
∥Sx∥22

]
= ∥x∥22 for all x ∈ Cn，

where ES denotes expectation over the randomness of S, i.e.,
the average taken over multiple independent sketching
matrices sampled from a certain distribution (e.g., Gaussian).

▶ Leads to small least-squares or eigenvalue subproblems with
much lower cost.



Sketching + GMRES (sGMRES)

▶ Classic GMRES solves Ax = f (A ∈ Cn×n, f ∈ Cn) by
finding an approximate solution xB = By in the Krylov
subspace Kd(A, f), where B ∈ Cn×d, y ∈ Cd.

▶ It minimizes the residual ∥AxB − f∥2 by solving:

min
y∈Cd
∥ABy− f∥2

▶ sGMRES replaces this with a sketched version using a random
matrix S ∈ Cs×n (s≪ n):

min
y∈Cd
∥S(ABy− f)∥2 ,

▶ where
A ∈ Cn×n, B ∈ Cn×d, S ∈ Cs×n, y ∈ Cd, f ∈ Cn.



GMRES: Standard Arnoldi Process
▶ Build a full orthonormal basis for the Krylov subspace Kd(A, f)

Standard Arnoldi Process

Input: Matrix A ∈ Cn×n, vector f ∈ Cn, target dim. d
Output: Basis B = [b1, . . . , bd]

Initialize: b1 ← f/∥f∥2
for j = 2, 3, . . . , d do

v← Abj−1

for i = 1, . . . , j− 1 do
v← v− ⟨v, bi⟩bi

end for
bj ← v/∥v∥2

end for

Note: Full orthogonalization ensures numerical stability but is
expensive.



sGMRES: Truncated Arnoldi Process
▶ Key idea: Only orthogonalize against the most recent k

vectors to reduce computational cost.

Truncated Arnoldi Process

Input: Matrix A ∈ Cn×n, vector f ∈ Cn, target dim. d,
truncation k
Output: Basis B = [b1, . . . , bd]

Initialize: b1 ← f/∥f∥2
for j = 2, 3, . . . , d do

v← Abj−1

for i = max(1, j− k), . . . , j− 1 do
v← v− ⟨v, bi⟩bi

end for
bj ← v/∥v∥2

end for



Theoretical Guarantees: sGMRES

▶ With high probability, the sketching matrix S ∈ Cs×n (e.g.,
Gaussian, SRHT) satisfies:

(1− ε)∥r∥2 ≤ ∥Sr∥2 ≤ (1 + ε)∥r∥2 ∀r ∈ range(AB)

▶ Implies approximate solution xB = By⋆ from sGMRES
satisfies:

∥AxB − f∥2 ≤ (1 + ε)min
y
∥ABy− f∥2

▶ Sketch size s = O(d log d) suffices for (1± ε)-accuracy with
high probability.



Numerical Comparison: GMRES vs sGMRES

▶ GMRES: O(nd2) operations
▶ sGMRES: O(d3 + nd log d) operations
▶ Up to 70× faster for PDE discretizations (e.g.,

convection-diffusion)



Rayleigh–Ritz

▶ Given: matrix A ∈ Cn×n, and subspace basis B ∈ Cn×d with
orthonormal columns.

▶ Rayleigh–Ritz as projection: Find the best approximation to
AB in range(B) by minimizing:

min
M∈Cd×d

∥AB− BM∥2F

▶ Closed-form solution:

M = BHAB

▶ Solve eigenproblem: Mui = θiui
▶ Back-project eigenvectors: xi = Bui, with λi ≈ θi



Sketching + Rayleigh–Ritz (sRR)
▶ Let A ∈ Cn×n, B ∈ Cn×d, S ∈ Cs×n with s≪ n.

▶ sRR as sketched projection: Approximate AB within
range(B) by solving:

min
M∈Cd×d

∥S(AB− BM)∥F

▶ Closed-form solution:

M̂ = (SB)†(SAB)

▶ Solve eigenproblem: M̂ui = θiui; back-project eigenvectors:

xi ≈ Bui

▶ Accurate even if B is poorly conditioned; sketch size
s = O(d log d) suffices with high probability.



Theoretical Guarantees

▶ Suppose B ∈ Cn×d spans a good approximate invariant
subspace of A ∈ Cn×n.

▶ Let S ∈ Cs×n be a random matrix with i.i.d. sub-Gaussian
entries (or SRHT), and define:

M̂ = (SB)†(SAB)

▶ Then for any 0 < ε < 1, if s ≥ C · d log(d/δ)/ε2, we have with
probability at least 1− δ:∥∥∥M̂− B∗AB

∥∥∥ ≤ ε∥A∥2

▶ Consequently, the eigenvalues of M̂ approximate those of A in
range(B) up to O(ε) error.



Comparison: eigs vs sRR

▶ eigs: classic Arnoldi + RR, expensive orthogonalization
▶ sRR: fast basis + sketching = 10× speedup
▶ Accuracy preserved, suitable for optimization subproblems



Conclusion

▶ Presented sGMRES and sRR for efficient solution of linear
systems and eigenproblems.

▶ Sketching reduces dimension with little accuracy loss.
▶ Scalable tools for modern large-scale computations.
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