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Motivation and Background

» In scientific computing and machine learning, solving
large-scale linear systems Ax = f and eigenvalue problems
Ax = Xx is fundamental.

» Classical algorithms such as GMRES (for linear systems) and
Rayleigh—Ritz / eigs (for eigenvalue problems) are accurate
but costly for large n.

» Randomized algorithms (e.g., sketching) enable fast
dimension reduction, making traditional solvers scalable.

Goal: Develop projection-based solvers accelerated by random
sketching, retaining accuracy while reducing cost.



Sketching: A Primer
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Sketching: project a high-dimensional problem onto a
lower-dimensional subspace using a random matrix.
Let S € C**" be a random sketching matrix with s < n, such
that:

Es [HSXH%} = |x||3 forallx € C",

where Eg denotes expectation over the randomness of S, i.e.,
the average taken over multiple independent sketching
matrices sampled from a certain distribution (e.g., Gaussian).

Leads to small least-squares or eigenvalue subproblems with
much lower cost.



Sketching + GMRES (sGMRES)

» Classic GMRES solves Ax = f (A € C"™", fe C") by
finding an approximate solution xg = By in the Krylov
subspace Ky(A,f), where B € C"™9, ye C“.

» It minimizes the residual |Axg — f||2 by solving:

min ||[ABy — f
min [ ABy ~ ],

» sGMRES replaces this with a sketched version using a random
matrix S € C**" (s < n):
min ||S(ABy — f)||,,
min [$(ABy — 9,

» where
AcC™n Be (C”Xd, SeC*" ye (Cd, feCn



GMRES: Standard Arnoldi Process
» Build a full orthonormal basis for the Krylov subspace Ky4(A, f)

Standard Arnoldi Process

Input: Matrix A € C"™", vector f € C", target dim. d
Output: Basis B = [by,...,by]

Initialize: by < f/||f]|2
for j=2,3,...,d do
V < Abj_l
for i=1,...,j—1 do
V< v — (v,b)b;
end for
bj = v/[[vl|2
end for

.

Note: Full orthogonalization ensures numerical stability but is
expensive.



sGMRES: Truncated Arnoldi Process

> Key idea: Only orthogonalize against the most recent k
vectors to reduce computational cost.

Truncated Arnoldi Process

Input: Matrix A € C"™", vector f € C", target dim. d,
truncation k

Output: Basis B = [by,..., by

Initialize: by < f/|/f]|2
for j=2,3,...,d do
V < Abjfl
for i=max(1l,j—k),...,j—1 do
v < v — (v,bj)b;
end for
bj < v/|[v]l2

end for




Theoretical Guarantees: sGMRES

» With high probability, the sketching matrix S € C**" (e.g.,
Gaussian, SRHT) satisfies:

(1 —¢)llrfla < [ISrfla < (1 +&)lr[l2  Vr € range(AB)

» Implies approximate solution xg = By* from sGMRES
satisfies:

l1Axg —fll2 < (1 + &) min |ABy — fl|2

» Sketch size s = O(dlog d) suffices for (1 & €)-accuracy with
high probability.



Numerical Comparison: GMRES vs sGMRES

» GMRES: O(nd?) operations
» sGMRES: O(d® + ndlog d) operations

» Up to 70x faster for PDE discretizations (e.g.,
convection-diffusion)
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Rayleigh—Ritz

> Given: matrix A € C"™", and subspace basis B € C"*9 with
orthonormal columns.

> Rayleigh—Ritz as projection: Find the best approximation to
AB in range(B) by minimizing:

min  |[[AB — BM||%
Mecdxd

» Closed-form solution:

M = BAB

» Solve eigenproblem:  Mu; = Ou;

> Back-project eigenvectors:  x; = Bu;, with \; = 6;



Sketching + Rayleigh—Ritz (sRR)
> Let A e C™" BeC"™9 S e C™" with s < n.

> sRR as sketched projection: Approximate AB within
range(B) by solving:

min ||S(AB — BM
min 8 e

» Closed-form solution:

M = (SB)f(SAB)

» Solve eigenproblem: I\A/Iu,- = fu;; back-project eigenvectors:
X; ~ Bu;

» Accurate even if B is poorly conditioned; sketch size
s = O(dlog d) suffices with high probability.



Theoretical Guarantees

» Suppose B € C"™9 spans a good approximate invariant
subspace of A € C"™",

» Let S € C*" be a random matrix with i.i.d. sub-Gaussian
entries (or SRHT), and define:

M = (SB)/(SAB)

» Then for any 0 < e < 1, if s> C- dlog(d/d)/e?, we have with
probability at least 1 — ¢:

HM - B*ABH < c[|A[]»

» Consequently, the eigenvalues of M approximate those of A in
range(B) up to O(g) error.



Comparison: eigs vs sRR

P eigs: classic Arnoldi + RR, expensive orthogonalization
» sRR: fast basis + sketching = 10x speedup

» Accuracy preserved, suitable for optimization subproblems

residual ||Az — Az||»
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Conclusion

» Presented sGMRES and sRR for efficient solution of linear
systems and eigenproblems.

» Sketching reduces dimension with little accuracy loss.

» Scalable tools for modern large-scale computations.
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