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Stochastic optimization with unknown distribution

Given a decision space X ⊆ Rdx and an uncertain parameter ξ ∈ Ξ ⊆ Rd with
unknown distribution F , we consider the stochastic optimization problem

min
x∈X

Eξ∼F

[
c(x; ξ)

]
.

Here:
▶ x is the decision variable,
▶ c(x; ξ) is the cost incurred when uncertainty ξ realizes,
▶ F is the true but unknown distribution of ξ.
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Baseline: Sample Average Approximation (SAA)

▶ Idea. Replace the unknown distribution F by the empirical distribution
constructed from observed samples ξ1, . . . , ξN .

▶ Empirical distribution.

F̂ =
1

N

N∑
j=1

δξj .

▶ SAA problem.

ẑSAA = min
x∈X

EF̂ [c(x; ξ)] = min
x∈X

1

N

N∑
j=1

c(x; ξj).

Remark. SAA is asymptotically consistent under mild conditions [6], i.e., ẑSAA → z⋆

as N → ∞.
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Motivation

▶ SAA is asymptotically correct. As the sample size grows, the SAA solution
converges to the true optimum.

▶ The real issue is finite-sample instability. With limited data, the SAA solution
can be highly sensitive to small data perturbations, especially under heavy-tailed
noise.

▶ No reliable finite-sample performance guarantee. In general, there is no
clean, non-asymptotic upper bound on the true out-of-sample performance of the
SAA solution.

A common workaround: two-sample SAA (2-SAA).
▶ Use one part of the data for optimization and the other for evaluation;
▶ Apply classical concentration results (e.g., Student-t).

Limitation. Data splitting increases variance and may fail under heavy-tailed distributions [3].
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Distribution-first approach

▶ Construct a data-driven ambiguity set FN such that

Pr(F ∈ FN ) ≥ 1− α.

▶ Define the robust objective

ẑ(x) := sup
F0∈FN

EF0 [c(x; ξ)].

Interpretation. Among all distributions that are statistically plausible given the data,
evaluate the decision under the worst-case expected cost.
Key challenge: FN lives in the space of probability distributions, so the inner problem
is infinite-dimensional in general.
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Robust SAA: the core objective

Goal. Construct an upper bound ẑ(x) such that, for confidence 1− α,

Pr
(
EF [c(x; ξ)] ≤ ẑ(x), ∀x ∈ X

)
≥ 1− α.

Key idea.
▶ Not to directly modify the objective;
▶ But to first construct a confidence region for the unknown distribution F .
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General structure of the robust problem

▶ The decision variable in the inner problem is a distribution;
▶ A distribution is a function object (infinite-dimensional);
▶ The inner problem

sup
F0∈FN

EF0 [c(x; ξ)]

is therefore an infinite-dimensional optimization problem.
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From GoF confidence regions to tractable formulations

General picture.
▶ goodness-of-fit (GoF) tests (KS, CvM, AD, χ2, etc.) induce confidence regions in

the space of probability distributions [4, 7];
▶ These regions define the ambiguity set FN ;
▶ Under suitable structure, the worst-case expectation can be computed via convex

optimization.

Remark. Depending on the test and cost structure, the resulting formulation may be
an LP, SOCP, or other convex program.
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A representative case: discrete / scenario-based formulation

Remark. To illustrate tractability, we consider a discrete (or discretized) formulation,
which yields a representative finite-dimensional model.
Scenario representation. Let {ξ1, . . . , ξm} be a finite set of scenarios. Any
distribution is represented by a probability vector p ∈ ∆m := {p ≥ 0 : 1⊤p = 1}.

9 / 19



Polyhedral ambiguity set (discrete case)
From SAA to Robust SAA. Recall that SAA replaces the true distribution by the
empirical distribution constructed from data.
Empirical distribution. Let p̂i denote the empirical frequency of scenario i.
Robustification via confidence bounds. Instead of trusting the empirical distribution
exactly, we construct componentwise confidence bounds

ℓi ≤ pi ≤ ui

such that
Pr

(
ℓi ≤ pi ≤ ui, ∀i

)
≥ 1− α.

Resulting ambiguity set.

FN =
{
p ∈ Rm : ℓ ≤ p ≤ u, 1⊤p = 1

}
.
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Robust SAA: min–sup formulation

For a decision x ∈ X , define scenario costs

ci(x) := c(x; ξi), c(x) := (c1(x), . . . , cm(x))⊤.

ẑ(x) = sup
p∈FN

c(x)⊤p, ẑ⋆ = min
x∈X

ẑ(x).

Structure.
▶ Inner problem: worst-case expectation;
▶ Outer problem: decision optimization.
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Inner problem: a linear program (discrete case)

Fix x. The inner problem is

max
p∈Rm

c(x)⊤p s.t. ℓ ≤ p ≤ u, 1⊤p = 1.

This is an LP:
▶ Linear objective;
▶ Linear constraints.

Interpretation. Find the statistically plausible distribution that maximizes expected
cost.
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Single-level reformulation via strong duality

By strong duality of linear programming [1], for each fixed x,

sup
p∈FN

c(x)⊤p = min
λ,µ≥0, ν∈R

ν + u⊤λ− ℓ⊤µ s.t. λ− µ+ ν1 ≥ c(x).

Thus the robust SAA problem becomes a single convex optimization problem.
If X is polyhedral and ci(x) is linear or piecewise-linear, this formulation reduces to an
LP.
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Finite-sample validity of robust SAA
Theorem. Finite-sample validity (uniform upper bound)

Let ξ1, . . . , ξN ∼ F be IID samples and let FN = FN (ξ1, . . . , ξN ) be a (random) ambiguity
set constructed from the data such that

Pr
(
F ∈ FN

)
≥ 1− α.

Define the robust SAA objective for any x ∈ X by

ẑ(x) := sup
F0∈FN

EF0
[c(x; ξ)] .

Then, with probability at least 1− α,

sup
x∈X

(
EF [c(x; ξ)]− ẑ(x)

)
≤ 0.

Implication. The optimal value of robust SAA is a high-confidence upper bound on the true
optimal value of the stochastic program, without data splitting.
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Asymptotic behavior of robust SAA
Theorem. Asymptotic consistency

Let {ξ1, . . . , ξN} be IID samples drawn from the true distribution F . Assume that the
ambiguity set FN = FN (ξ1, . . . , ξN ) is constructed such that

Pr(F ∈ FN ) → 1 as N → ∞,

and that FN shrinks to {F} in the sense that

sup
F0∈FN

∣∣EF0
[c(x; ξ)]− EF [c(x; ξ)]

∣∣ → 0 for each fixed x ∈ X .

Then, for any fixed x ∈ X , the robust SAA objective

ẑ(x) := sup
F0∈FN

EF0
[c(x; ξ)]

converges to the true expected cost:

ẑ(x) → EF [c(x; ξ)] as N → ∞.

Interpretation. Robust SAA provides finite-sample protection while remaining asymptotically
non-conservative.
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Consistency properties across statistical tests
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Finite-sample behavior: comparison of upper bounds
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Real-world application: portfolio allocation
▶ Problem. Portfolio allocation under distributional uncertainty, with a

risk-sensitive objective (e.g., CVaR) [5].
▶ Result.
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