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Stochastic optimization with unknown distribution

Given a decision space X C R% and an uncertain parameter £ € Z C R? with
unknown distribution F', we consider the stochastic optimization problem

min Eeop|c(z;€)|.

min Ee Fle(a;6)]

Here:
» z is the decision variable,
» c(x;€) is the cost incurred when uncertainty ¢ realizes,
» F'is the true but unknown distribution of &.
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Baseline: Sample Average Approximation (SAA)

» lIdea. Replace the unknown distribution F' by the empirical distribution
constructed from observed samples ¢!, ..., V.

» Empirical distribution.

1 N
F= Nzlagj.
J:
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Baseline: Sample Average Approximation (SAA)

» lIdea. Replace the unknown distribution F' by the empirical distribution
constructed from observed samples ¢!, ..., V.

» Empirical distribution.

1 N
F= Nzlagj.
J:

> SAA problem.

N

1 .
A . . . . ]
ZSAA = gél/r‘{l EF [C(.Z', f)] 2%1;1 N ]E - 0(513.76~ )

Remark. SAA is asymptotically consistent under mild conditions [6], i.e., Z5an — 2*
as N — oo.
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Motivation

> SAA is asymptotically correct. As the sample size grows, the SAA solution
converges to the true optimum.

» The real issue is finite-sample instability. With limited data, the SAA solution
can be highly sensitive to small data perturbations, especially under heavy-tailed
noise.

» No reliable finite-sample performance guarantee. In general, there is no
clean, non-asymptotic upper bound on the true out-of-sample performance of the
SAA solution.

A common workaround: two-sample SAA (2-SAA).
> Use one part of the data for optimization and the other for evaluation;
» Apply classical concentration results (e.g., Student-t).

Limitation. Data splitting increases variance and may fail under heavy-tailed distributions [3].
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Distribution-first approach

» Construct a data-driven ambiguity set Fn such that
Pr(FeFn)>1—a.
» Define the robust objective

Z(x):= sup Epg[c(z;8)].
FoeFN

Interpretation. Among all distributions that are statistically plausible given the data,
evaluate the decision under the worst-case expected cost.

Key challenge: Fy lives in the space of probability distributions, so the inner problem
is infinite-dimensional in general.

5/19



Robust SAA: the core objective

Goal. Construct an upper bound z(z) such that, for confidence 1 — «,
Pr(Eplc(z;€)] < Z(z), Vo e X) > 1—a.
Key idea.

> Not to directly modify the objective;

» But to first construct a confidence region for the unknown distribution F'.
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General structure of the robust problem

» The decision variable in the inner problem is a distribution;
» A distribution is a function object (infinite-dimensional);

» The inner problem

sup Ep[c(;€)]
FoeFn

is therefore an infinite-dimensional optimization problem.
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From GoF confidence regions to tractable formulations

General picture.

» goodness-of-fit (GoF) tests (KS, CvM, AD, 2, etc.) induce confidence regions in
the space of probability distributions [4, 7];
P> These regions define the ambiguity set Fy;

» Under suitable structure, the worst-case expectation can be computed via convex
optimization.
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From GoF confidence regions to tractable formulations

General picture.

» goodness-of-fit (GoF) tests (KS, CvM, AD, 2, etc.) induce confidence regions in
the space of probability distributions [4, 7];

P> These regions define the ambiguity set Fy;

» Under suitable structure, the worst-case expectation can be computed via convex
optimization.

Remark. Depending on the test and cost structure, the resulting formulation may be
an LP, SOCP, or other convex program.
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A representative case: discrete / scenario-based formulation

Remark. To illustrate tractability, we consider a discrete (or discretized) formulation,
which yields a representative finite-dimensional model.

Scenario representation. Let {¢!,... ¢™} be a finite set of scenarios. Any
distribution is represented by a probability vector p € A, ;== {p>0:1"p =1}
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Polyhedral ambiguity set (discrete case)

From SAA to Robust SAA. Recall that SAA replaces the true distribution by the
empirical distribution constructed from data.

Empirical distribution. Let p; denote the empirical frequency of scenario .

Robustification via confidence bounds. Instead of trusting the empirical distribution
exactly, we construct componentwise confidence bounds

such that

Resulting ambiguity set.

Fy={peR™: {<p<u, 1Tp:1}.
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Robust SAA: min—sup formulation

For a decision x € X, define scenario costs

ci(x) = c(z; &), c(x) = (cr(z), ..., em(@) .

2(z) = sup c(z) p, Z* = min z(z).
pE]:N reX

Structure.
» Inner problem: worst-case expectation;

» Outer problem: decision optimization.
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Inner problem: a linear program (discrete case)

Fix z. The inner problem is

max c(z)'p st. £<p<u, 1Tp=1.
peER™

This is an LP:
P Linear objective;
» Linear constraints.

Interpretation. Find the statistically plausible distribution that maximizes expected
cost.
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Single-level reformulation via strong duality

By strong duality of linear programming [1], for each fixed z,

T . T T
sup c(z = min v+u' A—1F st. A—pu+vl>clz).
sup () p \n I 0 > c(z)

Thus the robust SAA problem becomes a single convex optimization problem.

If X is polyhedral and ¢;(x) is linear or piecewise-linear, this formulation reduces to an
LP.
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Finite-sample validity of robust SAA

Theorem. Finite-sample validity (uniform upper bound)

Let ¢1,...,6N ~ F be IID samples and let Fy = Fn (€L, ..., €N) be a (random) ambiguity
set constructed from the data such that

Pr(FE]—"N) > 1—-a.
Define the robust SAA objective for any z € X by

2(z) := sup Eg[c(z;6)].
FoeFN

Then, with probability at least 1 — «,

sup (Ep[e(z; €)] - 2(x)) <0,

zeX

Implication. The optimal value of robust SAA is a high-confidence upper bound on the true
optimal value of the stochastic program, without data splitting.
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Asymptotic behavior of robust SAA

Theorem. Asymptotic consistency

Let {¢',...,6N) be IID samples drawn from the true distribution F. Assume that the
ambiguity set Fy = Fn (€1, ...,&N) is constructed such that

Pr(F e Fy) =+ 1 as N — o0,
and that Fy shrinks to {F'} in the sense that

sup |Ep,[c(z;€)] — Erfc(z;€)]| — 0 for each fixed z € X.
FoEFN

Then, for any fixed x € X, the robust SAA objective

Z(z) == sup Epg,[c(z;8)]
FoeFnN

converges to the true expected cost:

2(x) — Eple(x;€)] as N — co.
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Consistency properties across statistical tests

Table 1 Summary of convergence results

GoF test Support Consistent ~ Uniformly consistent
Xz and G-test Finite Yes Yes
KS, Kuiper, CvM, Watson, Univariate Yes Yes
and AD tests
Test of marginals using the Multivariate No No
above tests
LCX-based test Multivariate, bounded Yes Yes
LCX-based test Multivariate, unbounded Yes ?
Tests implied by DUSs of Multivariate No No
[13,15]
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Finite-sample behavior: comparison of upper bounds

Loss ($)
Il --- Non-data—driven
600~ .
— Data—driven
500+
2—SAA bound
400 - Delage & Ye'l0
Delage & Ye '10 DRO bound
300L \ '\'ﬂ' DRO bound (bootstrapped)

200F iﬂﬂ Scarf '58 DRO bound
Wbound
; e e

T
100 i : :
L T = SAA estimates Full info optimum

==

. . . . ! . Samples
10 10% 103 10* 10° 10° 10’ 108 P
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Real-world application: portfolio allocation

» Problem. Portfolio allocation under distributional uncertainty, with a
risk-sensitive objective (e.g., CVaR) [5].

> Result.
—=— SAA —A— 2-SAA —¢— Robust SAA
—=— Delage & Ye '10 DRO (bootstrapped) ==-- Optimum
Suboptimality Variance
= 0.500/
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