Quantum Natural Gradient

James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo

August 31, 2025

What is a Bit? (比特)

- ightharpoonup **Bit** = the smallest unit of classical information.
- **>** Can only be **0** (off, 关) or **1** (on, 开).
- All data in a computer (text, images, videos) is stored as long strings of bits.
- Analogy: a light switch—either off (0) or on (1).

What is a Qubit? (量子比特)

A Qubit can be in state |0⟩, state |1⟩, or a superposition (叠加态):

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

- α , β are complex numbers with $|\alpha|^2 + |\beta|^2 = 1$.
- **Measurement**: outcome is 0 with probability $|\alpha|^2$, or 1 with probability $|\beta|^2$.
- ➤ Analogy: a spinning coin (在空中旋转的硬币) that is partly heads and partly tails until observed.

Entanglement (量子纠缠)

- **Definition**: A special correlation between qubits that cannot be explained classically.
- Example: two-qubit entangled state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

- Measurement (测量):
 - If the first qubit is measured as 0, the second must also be 0.
 - If the first is 1, the second is guaranteed to be 1.
- ▶ Intuition (直观类比): Like two perfectly synchronized coins (同步硬币) —flip one, the other shows the same, no matter how far apart.
- ► Importance (重要性): Entanglement is a key resource powering quantum algorithms and quantum communication.

What is Quantum Computing?

▶ Quantum state (量子态): superposition

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

▶ Quantum gates (量子门): unitary operations

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad X|0\rangle = |1\rangle$$

▶ Quantum circuits (量子电路): sequence of gates

$$|\psi_{\mathsf{out}}\rangle = U|0\rangle^{\otimes n}$$

▶ In short: Quantum Computing = Superposition + Entanglement + Circuits

Why Quantum Computing Matters?

- ▶ Superposition (叠加): explore many possibilities in parallel.
- **Entanglement (**纠缠**)**: qubits work together with non-classical correlations.
- Applications:
 - Optimization
 - Machine learning
 - Quantum chemistry
 - ..
- **Reality**: not all problems are faster; current hardware is Noisy Intermediate-Scale Quantum (**NISQ**).

Variational Quantum Algorithms (VQAs)

- **Ansatz** (参数化电路): prepare a state $|\psi_{\theta}\rangle = U(\theta)|0\rangle$ with tunable parameters θ .
- **Cost function (**目标函数**)**: e.g., energy expectation $L(\theta) = \langle \psi_{\theta} | H | \psi_{\theta} \rangle$.
- ► Hybrid loop (混合优化循环):
 - Quantum device: evaluate $L(\theta)$ and gradients.
 - Classical optimizer: update parameters θ .
- ▶ Why VQAs? Suitable for today's NISQ (噪声中等规模) devices, more noise-resilient than deep circuits.

Optimization Challenges

- **Barren plateaus (**贫瘠高原): gradients ≈ 0 in wide regions ⇒ slow learning.
- ▶ **III-conditioning (**尺度不均**)**: some directions too steep/flat; vanilla GD zigzags, unstable steps.
- Noisy/stochastic estimates (測量噪声): finite shots + hardware noise \Rightarrow noisy $L(\theta)$, ∇L .
- **Costly gradients (**梯度代价高**)**: parameter-shift or finite-diff needs many circuit evaluations.
- **Reparametrization sensitivity (**重参数化敏感**)**: scaling of θ changes step quality.

Takeaway: We need a geometry-aware method \Rightarrow **Natural Gradient** \Rightarrow **Quantum Natural Gradient** (QNG).

Natural Gradient (自然梯度)

- **Vanilla Gradient Descent**: $\theta_{t+1} = \theta_t \eta \nabla L(\theta_t)$ Uses simple Euclidean geometry (ℓ_2 norm).
- Natural Gradient: scales the update by the Fisher Information Matrix (FIM) $F(\theta)$:

$$\theta_{t+1} = \theta_t - \eta F(\theta)^{-1} \nabla L(\theta_t)$$

- Key idea: follow steepest descent direction under the information geometry.
- Benefits:
 - ► Invariant to reparametrization (重参数化不敏感).
 - More stable and efficient convergence.
- Natural Gradient = shortest path on Earth's surface (测地线).

Quantum Natural Gradient (量子自然梯度, QNG)

- Idea: Quantum states live on a curved space (Fubini-Study metric).
- **Vanilla GD**: ignores curvature ⇒ inefficient steps.
- **QNG**: geometry-aware steps ⇒ faster, stable.

Quantum Geometric Tensor (QGT)

Definition: For variational state $|\psi(\theta)\rangle$, the Quantum Geometric Tensor is

$$G_{ij} = \langle \partial_i \psi | \partial_j \psi \rangle - \langle \partial_i \psi | \psi \rangle \langle \psi | \partial_j \psi \rangle.$$

► Metric tensor (度量张量): The real part gives the Fubini-Study metric

$$g_{ij} = \operatorname{Re} G_{ij}$$
.

- **Physical meaning (**物理意义): g_{ij} measures the sensitivity of the quantum state to parameter changes —i.e. how "curved" the parameter space is.
- **Connection to QNG**: QNG update uses this metric tensor to rescale gradients, ensuring geometry-aware optimization.

QNG in Practice: one iteration

- **Objective**: $L(\theta) = \langle \psi_{\theta} | H | \psi_{\theta} \rangle$, $| \psi_{\theta} \rangle = U(\theta) | 0 \rangle$.
- ▶ Gradient (参数位移) for Pauli rotations:

$$\partial_i L = \frac{1}{2} \left[L(\theta + \frac{\pi}{2}e_i) - L(\theta - \frac{\pi}{2}e_i) \right].$$

Metric tensor (度量张量): $g(\theta) = \text{Re } G(\theta)$, where

$$G_{ij} = \langle \partial_i \psi | \partial_j \psi \rangle - \langle \partial_i \psi | \psi \rangle \langle \psi | \partial_j \psi \rangle.$$

Practical: use **block-diagonal metric tensor** per layer (或只用 **diagonal metric tensor** 近似).

Update: solve a damped system

$$(g(\theta) + \lambda I) \Delta \theta = -\eta \nabla L(\theta), \qquad \theta \leftarrow \theta + \Delta \theta,$$

with small $\lambda > 0$ (稳定); optional: clip $\|\Delta\theta\|$.

Estimating the metric tensor

For layer l with commuting generators $\{K_i\}$ (e.g. Pauli rotations):

$$g_{ij}^{(l)} = \langle K_i K_j \rangle - \langle K_i \rangle \langle K_j \rangle \quad \text{on state } |\psi_l \rangle.$$

- Because $[K_i, K_j] = 0$ in a layer, one measurement basis per layer suffices.
- **Diagonal metric tensor**: $g_{ii} = \text{Var}(K_i) = \langle K_i^2 \rangle \langle K_i \rangle^2$ (最省 shots).
- **Cost tips**: share shots across i, j in the same layer; reuse cached estimates when θ 变化很小。
- Numerics: solve $(g + \lambda I)\Delta\theta = -\eta \nabla L$ by Cholesky (block-wise) or CG.

Quantum Natural Gradient (QNG): One Iteration

QNG Iteration (基于度量张量的一步更新)

Input: Ansatz $U(\theta)$, cost $L(\theta) = \langle \psi_{\theta} | H | \psi_{\theta} \rangle$, step size η , damping λ **Output:** Updated parameters θ^+

Prepare: $|\psi_{\theta}\rangle = U(\theta)|0\rangle$

1) Metric tensor (Fubini-Study) per layer:

For each layer with commuting generators $\{K_i\}$:

$$g_{ij}^{(l)} = \langle K_i K_j \rangle - \langle K_i \rangle \langle K_j \rangle$$

(block-diag metric tensor) Diagonal option: $g_{ii} = 1 - \langle K_i \rangle^2$

2) Gradient (parameter-shift):

$$\partial_{\theta_i} L(\theta) = \frac{1}{2} \bigg[L(\theta_i + \frac{\pi}{2}) - L(\theta_i - \frac{\pi}{2}) \bigg]$$

3) QNG step (solve linear system):

$$(g + \lambda I)\Delta\theta = -\eta \nabla L(\theta), \quad \theta^+ \leftarrow \theta + \Delta\theta$$

Experiments: Setup

Tasks:

- Variational Quantum Eigensolver (VQE) for molecular Hamiltonians (e.g. H₂, LiH).
- Quantum Approximate Optimization Algorithm (QAOA) for MaxCut problems.

Ansatz circuits:

- ► Hardware-efficient layered ansatz (含参数化旋转门 + CNOT entanglers).
- Depth L varied to test scalability.

Optimizers compared:

- Vanilla Gradient Descent (GD)
- Adam optimizer
- Quantum Natural Gradient (QNG): block-diagonal & diagonal approximations

Metrics:

- Convergence speed (iterations until near-optimal energy).
- Final energy error vs. ground truth.
- Shot complexity for estimating gradients / metric tensor.

Experimental results: Figure 1

Figure 1: The cost function value for n=7,9,11 qubits and l=5 layers as a function of training iteration for four different optimization dynamics. 8192 shots (samples) are used per required expectation value during optimization.

- ▶ Observation: QNG (red = block-diag, black = diagonal) converges much faster than Vanilla GD (blue) and Adam (green).
- ▶ **Trend**: performance gap increases as qubit number grows.

Experimental results: Figure 2

Figure 2: The cost function value for n=9 qubits and l=3,4,5,6 layers as a function of training iteration for four different optimization dynamics. 8192 shots (samples) are used per required expectation value during optimization.

- **Observation**: QNG (red/black) consistently outperforms GD and Adam across circuit depths.
- **Comparison**: Block-diag (red) slightly better than diagonal (black), but both far superior to classical optimizers.