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What is a Bit? (比特)

▶ Bit = the smallest unit of classical information.
▶ Can only be 0 (off, 关) or 1 (on, 开).
▶ All data in a computer (text, images, videos) is stored as long

strings of bits.
▶ Analogy: a light switch—either off (0) or on (1).



What is a Qubit? (量子比特)

▶ A Qubit can be in state |0⟩, state |1⟩, or a superposition
(叠加态):

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩
▶ 𝛼, 𝛽 are complex numbers with |𝛼|2 + |𝛽|2 = 1.
▶ Measurement: outcome is 0 with probability |𝛼|2, or 1 with

probability |𝛽|2.
▶ Analogy: a spinning coin (在空中旋转的硬币) that is partly

heads and partly tails until observed.



Entanglement (量子纠缠)

▶ Definition: A special correlation between qubits that cannot
be explained classically.

▶ Example: two-qubit entangled state

|𝜓⟩ = 1
√2

(|00⟩ + |11⟩)

▶ Measurement (测量):
▶ If the first qubit is measured as 0, the second must also be 0.
▶ If the first is 1, the second is guaranteed to be 1.

▶ Intuition (直观类比): Like two perfectly synchronized coins
(同步硬币) —flip one, the other shows the same, no matter
how far apart.

▶ Importance (重要性): Entanglement is a key resource
powering quantum algorithms and quantum communication.



What is Quantum Computing?

▶ Quantum state (量子态): superposition

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩

▶ Quantum gates (量子门): unitary operations

𝐻|0⟩ = 1
√2

(|0⟩ + |1⟩), 𝑋|0⟩ = |1⟩

▶ Quantum circuits (量子电路): sequence of gates

|𝜓out⟩ = 𝑈|0⟩⊗𝑛

▶ In short: Quantum Computing = Superposition +
Entanglement + Circuits



Why Quantum Computing Matters?

▶ Superposition (叠加): explore many possibilities in parallel.
▶ Entanglement (纠缠): qubits work together with

non-classical correlations.
▶ Applications:

▶ Optimization
▶ Machine learning
▶ Quantum chemistry
▶ ...

▶ Reality: not all problems are faster; current hardware is Noisy
Intermediate-Scale Quantum (NISQ).



Variational Quantum Algorithms (VQAs)

▶ Ansatz (参数化电路): prepare a state |𝜓𝜃⟩ = 𝑈(𝜃)|0⟩ with
tunable parameters 𝜃.

▶ Cost function (目标函数): e.g., energy expectation
𝐿(𝜃) = ⟨𝜓𝜃|𝐻|𝜓𝜃⟩.

▶ Hybrid loop (混合优化循环):
▶ Quantum device: evaluate 𝐿(𝜃) and gradients.
▶ Classical optimizer: update parameters 𝜃.

▶ Why VQAs? Suitable for today’s NISQ (噪声中等规模)
devices, more noise-resilient than deep circuits.



Optimization Challenges

▶ Barren plateaus (贫瘠高原): gradients ≈ 0 in wide regions
⇒ slow learning.

▶ Ill-conditioning (尺度不均): some directions too steep/flat;
vanilla GD zigzags, unstable steps.

▶ Noisy/stochastic estimates (测量噪声): finite shots +
hardware noise ⇒ noisy 𝐿(𝜃), ∇𝐿.

▶ Costly gradients (梯度代价高): parameter-shift or finite-diff
needs many circuit evaluations.

▶ Reparametrization sensitivity (重参数化敏感): scaling of 𝜃
changes step quality.

Takeaway: We need a geometry-aware method ⇒ Natural
Gradient ⇒ Quantum Natural Gradient (QNG).



Natural Gradient (自然梯度)

▶ Vanilla Gradient Descent: 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝐿(𝜃𝑡)
Uses simple Euclidean geometry (ℓ2 norm).

▶ Natural Gradient: scales the update by the Fisher
Information Matrix (FIM) 𝐹 (𝜃):

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝐹 (𝜃)−1∇𝐿(𝜃𝑡)

▶ Key idea: follow steepest descent direction under the
information geometry.

▶ Benefits:
▶ Invariant to reparametrization (重参数化不敏感).
▶ More stable and efficient convergence.

▶ Analogy (类比): Vanilla GD = straight line on a flat map;
Natural Gradient = shortest path on Earth’s surface (测地
线).



Quantum Natural Gradient (量子自然梯度, QNG)

▶ Idea: Quantum states live on a curved space (Fubini–Study
metric).

▶ Vanilla GD: ignores curvature ⇒ inefficient steps.
▶ QNG: geometry-aware steps ⇒ faster, stable.

Optimum

StartVanilla GD

QNG



Quantum Geometric Tensor (QGT)

▶ Definition: For variational state |𝜓(𝜃)⟩, the Quantum
Geometric Tensor is

𝐺𝑖𝑗 = ⟨𝜕𝑖𝜓|𝜕𝑗𝜓⟩ − ⟨𝜕𝑖𝜓|𝜓⟩⟨𝜓|𝜕𝑗𝜓⟩.

▶ Metric tensor (度量张量): The real part gives the Fubini–
Study metric

𝑔𝑖𝑗 = Re𝐺𝑖𝑗 .
▶ Physical meaning (物理意义): 𝑔𝑖𝑗 measures the sensitivity

of the quantum state to parameter changes —i.e. how
“curved”the parameter space is.

▶ Connection to QNG: QNG update uses this metric tensor to
rescale gradients, ensuring geometry-aware optimization.



QNG in Practice: one iteration
▶ Objective: 𝐿(𝜃) = ⟨𝜓𝜃|𝐻|𝜓𝜃⟩, |𝜓𝜃⟩ = 𝑈(𝜃)|0⟩.
▶ Gradient (参数位移) for Pauli rotations:

𝜕𝑖𝐿 = 1
2 [𝐿(𝜃 + 𝜋

2 𝑒𝑖) − 𝐿(𝜃 − 𝜋
2 𝑒𝑖)].

▶ Metric tensor (度量张量): 𝑔(𝜃) = Re𝐺(𝜃), where

𝐺𝑖𝑗 = ⟨𝜕𝑖𝜓|𝜕𝑗𝜓⟩ − ⟨𝜕𝑖𝜓|𝜓⟩⟨𝜓|𝜕𝑗𝜓⟩.

Practical: use block-diagonal metric tensor per layer (或只
用 diagonal metric tensor 近似).

▶ Update: solve a damped system

(𝑔(𝜃) + 𝜆𝐼) Δ𝜃 = − 𝜂 ∇𝐿(𝜃), 𝜃 ← 𝜃 + Δ𝜃,

with small 𝜆 > 0 (稳定)；optional: clip ‖Δ𝜃‖.



Estimating the metric tensor

▶ For layer 𝑙 with commuting generators {𝐾𝑖} (e.g. Pauli
rotations):

𝑔(𝑙)
𝑖𝑗 = ⟨𝐾𝑖𝐾𝑗⟩ − ⟨𝐾𝑖⟩⟨𝐾𝑗⟩ on state |𝜓𝑙⟩.

▶ Because [𝐾𝑖, 𝐾𝑗] = 0 in a layer, one measurement basis per
layer suffices.

▶ Diagonal metric tensor: 𝑔𝑖𝑖 = Var(𝐾𝑖) = ⟨𝐾2
𝑖 ⟩ − ⟨𝐾𝑖⟩2 (最省

shots).
▶ Cost tips: share shots across 𝑖, 𝑗 in the same layer; reuse

cached estimates when 𝜃 变化很小。
▶ Numerics: solve (𝑔 + 𝜆𝐼)Δ𝜃 = −𝜂∇𝐿 by Cholesky

(block-wise) or CG.



Quantum Natural Gradient (QNG): One Iteration
QNG Iteration (基于度量张量的一步更新)

Input: Ansatz 𝑈(𝜃), cost 𝐿(𝜃) = ⟨𝜓𝜃|𝐻|𝜓𝜃⟩, step size 𝜂, damping 𝜆
Output: Updated parameters 𝜃+

Prepare: |𝜓𝜃⟩ = 𝑈(𝜃)|0⟩
1) Metric tensor (Fubini–Study) per layer:

For each layer with commuting generators {𝐾𝑖}:

𝑔(𝑙)
𝑖𝑗 = ⟨𝐾𝑖𝐾𝑗⟩ − ⟨𝐾𝑖⟩⟨𝐾𝑗⟩

(block-diag metric tensor) Diagonal option:
𝑔𝑖𝑖 = 1 − ⟨𝐾𝑖⟩2

2) Gradient (parameter-shift):

𝜕𝜃𝑖 𝐿(𝜃) = 1
2 [𝐿(𝜃𝑖 + 𝜋

2 ) − 𝐿(𝜃𝑖 − 𝜋
2 )]

3) QNG step (solve linear system):

(𝑔 + 𝜆𝐼)Δ𝜃 = −𝜂∇𝐿(𝜃), 𝜃+ ← 𝜃 + Δ𝜃



Experiments: Setup
▶ Tasks:

▶ Variational Quantum Eigensolver (VQE) for molecular
Hamiltonians (e.g. H2, LiH).

▶ Quantum Approximate Optimization Algorithm (QAOA) for
MaxCut problems.

▶ Ansatz circuits:
▶ Hardware-efficient layered ansatz (含参数化旋转门 + CNOT

entanglers).
▶ Depth 𝐿 varied to test scalability.

▶ Optimizers compared:
▶ Vanilla Gradient Descent (GD)
▶ Adam optimizer
▶ Quantum Natural Gradient (QNG): block-diagonal & diagonal

approximations
▶ Metrics:

▶ Convergence speed (iterations until near-optimal energy).
▶ Final energy error vs. ground truth.
▶ Shot complexity for estimating gradients / metric tensor.



Experimental results: Figure 1

▶ Observation: QNG (red = block-diag, black = diagonal)
converges much faster than Vanilla GD (blue) and Adam
(green).

▶ Trend: performance gap increases as qubit number grows.



Experimental results: Figure 2

▶ Observation: QNG (red/black) consistently outperforms GD
and Adam across circuit depths.

▶ Comparison: Block-diag (red) slightly better than diagonal
(black), but both far superior to classical optimizers.


