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Classical Tensor Regression
▶ Inputs:

▶ Tensor covariate X ∈ Rp1×···×pm (e.g., images, connectivity
matrices);

▶ Vector covariate z ∈ Rpz (confounders like age, gender).
▶ Output: Scalar response y ∈ R (e.g., disease severity, test

score).
▶ Model Assumption (conditional mean):

E[y | X , z] = α + γ⊤z + ⟨B, X⟩,

where ⟨·, ·⟩ is the tensor Frobenius inner product (Frobenius
内积).

▶ Training Objective (least squares):

min
α,γ,B

1

n

n∑
i=1

(
yi − α− γ⊤zi − ⟨B,Xi⟩

)2
.

▶ Limitation: Only captures mean effects, unable to describe
distributional heterogeneity (分布异质性).



Quantile and Conditional Quantile

▶ Quantile:

Qy(τ) = inf{ q : Pr(y ≤ q) ≥ τ }, 0 < τ < 1.

Find a point q such that the probability of y being to its left is
at least τ .

▶ Conditional Quantile (given tensor X ):

Qy(τ | X ) = inf{ q : Pr(y ≤ q | X ) ≥ τ }.

y

Pr

QY(0.25) QY(0.9)



Quantile Tensor Regression (QTR)

▶ Inputs:
▶ Tensor covariate X ∈ Rp1×···×pm ;
▶ Vector covariate z ∈ Rpz .

▶ Output: Scalar response y ∈ R.
▶ Model Assumption (conditional quantile):

Qy(τ | X , z) = α(τ) + γ(τ)⊤z + ⟨B(τ),X⟩.

▶ Training Objective (minimize quantile loss):

min
α(τ),γ(τ),B(τ)

1

n

n∑
i=1

ρτ

(
yi − α(τ)− γ(τ)⊤zi − ⟨B(τ),Xi⟩

)
.



Quantile Loss Function
▶ Quantile Loss Function:

ρτ (w) = w{τ − I(w < 0)} =

{
τ w, w ≥ 0,

(τ − 1)w, w < 0.

▶ Intuition:
▶ When τ = 0.5 → Median regression (symmetric penalty,

robust to outliers).
▶ When τ = 0.9 → Focus more on right tail; τ = 0.1 → left tail.

▶ Advantages:
▶ Captures effects at different quantiles, robust to outliers and

extremes.
▶ Different τ address different scientific questions, not just

tuning for best performance.
▶ Limitations:

▶ Coefficient tensor B(τ) is high-dimensional, requires low-rank
decomposition (CP/Tucker).

▶ Optimization requires alternating updates, computationally
expensive and slow convergence.



Partial Quantile Tensor Regression (PQTR)

▶ Model Assumption (conditional quantile):

Qy(τ | X , z) = α(τ) + γ(τ)⊤z + ⟨B(τ),X⟩.

▶ Coefficient tensor B(τ) is high-dimensional, difficult to
estimate directly.

▶ PQTR Idea: Decompose B(τ) in Tucker form:

B(τ) ≈ ⟨⟨D(τ);W1,W2, . . . ,Wm⟩⟩,

where Wk ∈ Rpk×dk are factor matrices.



From Objective Function to Quantile Partial Tensor
Covariance

▶ Quantile Tensor Regression Objective:

min
α(τ),γ(τ),B(τ)

1

n

n∑
i=1

ρτ

(
yi − α(τ)− γ(τ)⊤zi − ⟨B(τ),Xi⟩

)
,

where ρτ (w) = w{τ − I(w < 0)}.
▶ Gradient Signal (quantile residual score):

R(τ) = ρτ

(
y − αy|z(τ)− γy|z(τ)

⊤z
)
, ρτ (w) = τ − I(w < 0).

▶ Role: Judges if y is above/below quantile τ , as supervision
signal.

▶ Define Quantile Partial Tensor Covariance:

C(τ) = E
[
R(τ)X

]
.

Analogous to cov(y,X ) in PLS, but using quantile residuals.



From Direct Estimation of B(τ) to Regression on Low-Dim
Core

▶ Original Objective:

min
α,γ,B(τ)

1

n

n∑
i=1

ρτ

(
yi − α− γ⊤zi − ⟨B(τ),Xi⟩

)
.

▶ Tucker Reparameterization:
B(τ) = ⟨⟨D(τ); W1, . . . ,Wm⟩⟩.

▶ Key Identity (inner product invariance under multi-mode
projection):〈

B(τ),Xi
〉
=

〈
D(τ), Xi ×1 W⊤

1 · · · ×m W⊤
m︸ ︷︷ ︸

Ti(τ)

〉
.

▶ Equivalent Objective (estimate Wk first, then estimate
low-dim coefficients):

min
α,γ,D(τ)

1

n

n∑
i=1

ρτ

(
yi − α− γ⊤zi − ⟨D(τ), Ti(τ)⟩

)
.

▶ PQTR Approach: Use C(τ) = E[R(τ)X ] for
eigendecomposition to get Wk at once, then solve the
low-dim quantile regression, finally set
B̂(τ) = ⟨⟨D̂(τ);W1, . . . ,Wm⟩⟩.



Estimating Factor Matrices: From C(τ) to Wk

▶ Take mode-k unfolding of C(τ):
C(k)(τ) ∈ Rpk×(p1···pk−1pk+1···pm).

▶ Construct quadratic matrix: M(k)(τ) = C(k)(τ)C(k)(τ)⊤.

▶ Eigendecomposition: M(k)(τ) = U(k)Λ(k)U(k)⊤.

▶ Take top dk eigenvectors: Wk = U(k)
[:,1:dk]

.

Low-Dim Representation (Tucker Multi-Mode Projection)
Obtain core tensor:

T (τ) = X ×1 W⊤
1 ×2 W⊤

2 · · · ×m W⊤
m,

where ×k is mode-k multiplication.

T (τ) ∈ Rd1×···×dm .

Perform low-dim quantile regression on T (τ).



Theoretical Result 1: Key Identity & Identifiability

Theorem (Pseudo-linearity Identity)
Under mild regularity conditions,

vec(C(τ)) = V(τ) vec(B(τ)), V(τ) ≻ 0.

▶ Implication 1: C(τ) = 0 ⇐⇒ B(τ) = 0 (identifiability).
▶ Implication 2: The eigenspace of C(τ) contains the

directions of B(τ).
▶ Consequence: One can estimate factor matrices Wk from

C(τ) instead of directly from B(τ).



Theoretical Result 2: Consistency of PQTR

Theorem (Consistency)
Suppose the true coefficient tensor B(τ) satisfies the envelope
structure, and the true envelope dimensions are {dk}. Then the
PQTR estimator

θ̂(τ) = (α̂, γ̂, B̂(τ))

is
√

n-consistent.
▶ Implication: PQTR achieves the same statistical efficiency as

classical quantile regression, even in high dimensions.
▶ Interpretation: Once the projection dimensions {dk} are

chosen correctly, no information is lost —redundancy is
removed.



Simulation Setup: Heterogeneous Tri-Square-Shaped
Tensor Coefficients

▶ Data Generation:
▶ Response: Yi = γ⊤Zi + ⟨B(ξi),Xi⟩+Φ−1(ξi).
▶ Vector covariate: Zi ∈ Rpz .
▶ Tensor covariate: Xi ∈ R50×50, covariance Σ2 ⊗ Σ1.
▶ Coefficient tensor: B(τ) is heterogeneous step function:

B(τ) = B1I(0 < τ < 0.35) + B2I(0.35 ≤ τ <
0.65) + B3I(0.65 ≤ τ < 1), with different ranks (e.g., 1,2,3)
and bases (tri-square-shaped).

▶ Compared Methods:
▶ PQTR variants: Fix (oracle ranks), ER (eigenvalue ratio for

dk), CV (5-fold cross-validation for dk).
▶ Benchmarks: CP (CP decomposition QR, with fused penalty),

TK (Tucker decomposition QR, with lasso), PCA (vectorize
then PCA + QR).



Simulation Results

Fig 1. Empirical averages for heterogeneous tri-square-shaped tensor
coefficients (step functions of τ) with τ = 0.1, 0.25, 0.5, 0.75, 0.9, under
envelope or diagonal covariate covariance.



Real Data Application Setup: PTSD Neuroimaging Study
▶ Data Source:

▶ 98 female subjects with PTSD (post-traumatic stress disorder).
▶ Response: PTSD symptom severity score (PSS).
▶ Tensor covariate: 279× 279 functional connectivity matrix

from fMRI (resting-state functional magnetic resonance
imaging), based on Power et al. (2011) brain parcellation
template (脑区划分模板).

▶ Vector covariate: Age (as confounder).
▶ Brain networks: Auditory (Aud), Somatomotor Dorsal (SMd),

Cingulo Opercular (CO), Default Mode (DMN), Fronto
Parietal (FP), Somatomotor Lateral (SMl), Visual (Vis),
Salience (Sal).

▶ Methods Applied:
▶ PQTR with ER (eigenvalue ratio) for selecting reduced

dimensions dk (typically 1 or 2 depending on τ).
▶ Benchmark: TEPLS (tensor envelope partial least squares,

mean-based regression).
▶ Goal: Demonstrate PQTR’s practical utility in revealing

neurobiologically meaningful and interpretable results
compared to mean regression.



Real Data Results: Heat Map of Standardized B̂(τ)

Fig2. Heat map of standardized B̂(τ) by ER (thresholded at cutoff 5),
and by TEPLS . Gray lines separate brain functional networks.


