Efficient Natural Gradient Descent Methods for Large-Scale PDE-Based Optimization Problems

Based on Levon Nurbekyan, Wanzhou Lei, and Yunan Yang

SIAM J. Sci. Comput., 2023

Background

▶ PDE-constrained optimization arises in inverse problems and ML-based PDE solvers.

$$\min_{\theta} \ \textit{f}(\rho(\theta)), \quad \text{s.t.} \ \mathcal{F}(\rho(\theta), \theta) = 0 \ (\text{PDE model})$$

- Notation:
 - \triangleright θ : parameter vector (e.g., discretized coefficients, NN weights).
 - $ho(\theta)$: state variable determined by PDE model \mathcal{F} .
 - $f(\rho(\theta))$: objective/loss measuring mismatch between model output and observed data.

Background

Standard Gradient Descent (GD):

$$\dot{\theta} = -\nabla_{\theta} f(\rho(\theta))$$

Efficient but can be slow and easily trapped in local minima.

Natural Gradient Descent (NGD):

$$\dot{\theta} = -G(\theta)^{-1} \nabla_{\theta} f(\rho(\theta)), \qquad G_{ij}(\theta) = \left\langle \partial_{\theta_i}^{g} \rho, \ \partial_{\theta_j}^{g} \rho \right\rangle_{g}$$

Performs steepest descent in the state manifold (\mathcal{M},g) , but computing $G(\theta)^{-1}$ is expensive in large-scale PDEs.

Goal: Design efficient NGD schemes that scale to high-dimensional PDE optimization.

Motivation / Challenges

- ▶ **Problem:** Direct NGD is infeasible in PDE optimization (huge $G(\theta)$, no explicit inverse).
- Observation: NGD can be reformulated as a least-squares problem:

$$\eta^{\text{nat}} = \arg\min_{\eta} \left\| \nabla_{\rho}^{g} f + J \eta \right\|_{g}^{2}, \quad J = [\partial_{\theta_{1}}^{g} \rho, \dots, \partial_{\theta_{\rho}}^{g} \rho].$$

- Derivation (sketch):
 - ▶ By chain rule: $\nabla_{\theta} f = J^{\top} \nabla_{\rho}^{g} f$.
 - Metric pullback: $G(\theta) = J^{\frac{\rho}{1}}J$.
 - ▶ NGD system: $G(\theta)\eta = -\nabla_{\theta}f \iff$ normal equations of the LS problem above.
- ▶ **Key Challenge:** Efficiently solving this LS system at scale.

How to Solve the LS Problem

Recall: NGD reduces to solving the least-squares system

$$\boldsymbol{\eta}^{\textit{nat}} = \arg\min_{\boldsymbol{\eta}} \ \|\nabla_{\boldsymbol{\rho}}^{\textit{g}} \boldsymbol{f} + J\boldsymbol{\eta}\|_{\textit{g}}^{2}, \quad J = [\partial_{\theta_{1}}^{\textit{g}} \boldsymbol{\rho}, \dots, \partial_{\theta_{\rho}}^{\textit{g}} \boldsymbol{\rho}].$$

- ► Case 1: J explicit (moderate size).
 - ► *J* is a matrix we can store explicitly.
 - Classical linear algebra tools apply: QR, SVD.
 - ► Low-rank structure ⇒ efficient approximation.
- ► Case 2: J implicit (PDE constraints).
 - ▶ In PDE problems, parameter dimension can be 10^5 – 10^9 .
 - J is too large to form or store explicitly.
 - What we can compute efficiently:
 - Jv: perturb parameter θ in direction v, solve PDE ⇒ state variation.
 - $ightharpoonup J^{T}v$: via adjoint-state method, one additional PDE solve.
 - ▶ Iterative solvers (CG, LSQR) only require Jv and $J^{\top}v$, so they are the natural choice.

Algorithms for Computing NGD

NGD Algorithms (Explicit vs Implicit Jacobian)

Goal: Compute NGD direction η_L^{nat} in cases 1 and 2.

Algorithm 3.1 (Explicit J)

- 1. Compute Y = LJ.
- 2. Perform QR factorization: [Q, R] = qr(Y).
- 3. Compute NGD direction

$$\eta_{\rm L}^{\rm nat} = -{\rm R}^{-1}{\rm Q}^{\top}({\rm L}^{\top})^{\dagger}\,\partial_{\rho}{\rm f}. \label{eq:eta_loss}$$

Algorithm 3.2 (Operator form of G_L)

- 1. Given constraint h, solve $\partial_{\rho} h \gamma = -\partial_{\theta} h \eta$.
- 2. Solve $\partial_{\rho} h^{\top} \lambda = L^{\top} L \gamma$.
- 3. Evaluate $-\partial_{\theta} h^{\top} \lambda = G_L \eta$.

Algorithm 3.3 (Implicit J, PDE-scale)

- 1. Solve $(\partial_{\rho} h)^{\top} \lambda = \partial_{\rho} f$, obtain λ .
- 2. Compute parameter gradient $\partial_{\theta} f = -\partial_{\theta} h^{\top} \lambda$.
- 3. Obtain operator action $G_l \eta$ via Algorithm 3.2.
- 4. Solve $G_L\eta_L^{nat}=-\partial_{\theta}f$ using Conjugate Gradient.

NGD under Different Metrics

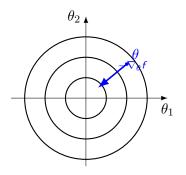
Metric	Formula (gradient in ρ -space)
L^2	$ abla_{ ho}^{ extsf{g}} f = abla_{ ho} f$
Sobolev <i>H</i> ⁵	$\nabla^{g}_{\rho} f = (I - \Delta)^{s} \nabla_{\rho} f$
Fisher–Rao	$ abla_{ ho}^{g} f = ho abla_{ ho} f$
Wasserstein W_2	$ abla_{ ho}^{'}\!$

- ► L²: standard Euclidean gradient.
- Sobolev H^s : smooths the update, reduces oscillations.
- Fisher–Rao: scale-invariant, common in statistics/ML.
- ▶ Wasserstein W_2 : linked to optimal transport, mass movement.

Takeaway: The LS reformulation applies to all metrics, making NGD a unified framework across different geometries.

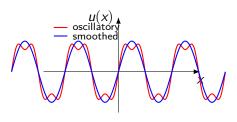
Geometric Intuition of Metrics

L^2 (Euclidean)



Level sets are circles (flat geometry). Steepest descent is the usual Euclidean negative gradient. LS uses standard $\|\cdot\|_2$ (Frobenius) norm.

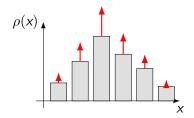
Sobolev Hs



 H^s metric weights high frequencies via $(I-\Delta)^s$: updates are smoothed, penalizing oscillations in the state.

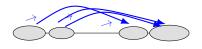
Geometric Intuition of Metrics

Fisher-Rao



Inner product $\langle u,v\rangle_{\mathrm{FR}}=\int \frac{uv}{\rho}\,dx\Rightarrow$ effective gradient $\nabla_{\rho}^{\mathrm{g}}f=\rho\,\nabla_{\rho}f$: regions with larger ρ are weighted more (scale-invariant).

Wasserstein W_2



Geometry of mass transport: tangent vectors are velocity fields v with $-\nabla \cdot (\rho v) = \zeta. \ \, \text{The Riemannian}$ gradient takes the form $\nabla_{\rho}^{g}f = \nabla(\nabla_{\rho}f);$ updates move mass along v.

Extensions: Damped NGD

- **Problem:** Information matrix G_L can be
 - rank-deficient or ill-conditioned,
 - leading to unstable or extreme NGD updates.
- **Solution:** Add damping for stability:

$$G_{\lambda} = \lambda I + G_{L}, \quad \lambda > 0.$$

- Ensures positive definiteness.
- Avoids extreme updates, improves numerical robustness.
- ► Connection: Levenberg–Marquardt method = damped Gauss–Newton = L^2 NGD in this framework.
- ▶ **Update rule:** In mixed (θ, ρ) metric space:

$$\theta^{l+1} = \arg\min_{\theta} \left\{ f(\rho(\theta)) + \frac{\lambda d_{\theta}(\theta, \theta^{l})^{2} + d_{\rho}(\rho(\theta), \rho(\theta^{l}))^{2}}{2\tau} \right\}.$$

Extensions: Damped NGD

▶ **Generalization:** Use another ρ -space metric for regularization instead of θ -space.

$$\theta^{l+1} = \arg\min_{\theta} \left\{ f(\rho(\theta)) + \frac{\lambda d_{\rho_1}(\rho(\theta), \rho(\theta^l))^2 + d_{\rho_2}(\rho(\theta), \rho(\theta^l))^2}{2\tau} \right\}.$$

- ► Here:
 - $ightharpoonup d_{
 ho_2} = ext{main natural gradient metric,}$
 - $ightharpoonup d_{
 ho_1}=$ regularizing metric.
- ▶ Interpretation: H^1 NGD damped by L^2 NGD (regularization strength set by λ).
- ► Takeaway: Damping provides a flexible stabilization mechanism, unifying NGD with classical methods such as Gauss-Newton and Levenberg-Marquardt.

Experimental Setup

- ► Tasks: PDE-constrained optimization problems
 - Gaussian mixture inversion
 - Physics-Informed Neural Networks (PINNs)
 - ► Full Waveform Inversion (FWI)

Methods compared:

- ► Gradient Descent (GD)
- Natural Gradient Descent (NGD) with metrics:

$$L^2$$
, H^1 , H^{-1} , Fisher-Rao (FR), W_2

Evaluation criteria:

- ► Convergence path and trajectory (visualization)
- Loss decay vs iterations and wall-clock time
- Reconstruction quality (SSIM for FWI, error vs ground truth)
- ► Implementation: NGD directions computed via LS formulation with explicit/implicit Jacobian.

Gaussian Mixture Example

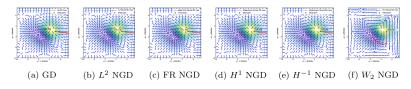
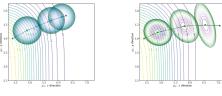


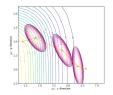
FIG. 2. Gaussian mixture example: Level sets, vector fields, and convergent paths using GD and different NGD methods to invert μ_1 . All algorithms start from initial guess (5,3).

Observation:

- GD: slow convergence, oscillatory path.
- NGD: faster and smoother trajectories.
- ▶ Different metrics yield different geometry of descent:
 - L2: standard Euclidean updates.
 - FR: scale-invariant steps.
 - $ightharpoonup H^1$: smooths oscillations in updates.
 - $ightharpoonup H^{-1}$: emphasizes large-scale structure.
 - \triangleright W_2 : mass-transport interpretation, very different path.

Local Quadratic Models





- (a) Standard gradient descent
- (b) L^2 natural gradient
- (c) W_2 natural gradient

Fig. 3. The local quadratic models of GD, L^2 NGD, and W_2 NGD in the first several iterations.

- ▶ Compare GD, L^2 NGD, and W_2 NGD in the first iterations.
- ▶ **GD:** isotropic quadratic model, ignores geometry.
- $ightharpoonup L^2$ **NGD:** improves conditioning, balanced ellipses.
- \blacktriangleright W_2 **NGD:** anisotropic ellipses capturing transport geometry.
- Takeaway: NGD changes local landscape, leading to better-conditioned descent directions.

PINN Results

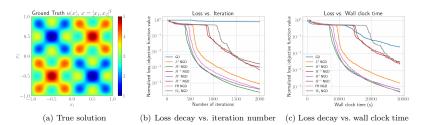


FIG. 4. (a) PINN example true solution; (b) loss function value decay in terms of the number of iterations; (c) loss function value decay in terms of the wall clock time.

- Physics-Informed Neural Network (PINN) example.
- Observations:
 - NGD accelerates convergence significantly compared to GD.
 - Sobolev H^1 and Wasserstein W_2 metrics yield smoother, more stable decay.
 - Consistent improvements both in iteration count and actual runtime.

Full Waveform Inversion (FWI) Results

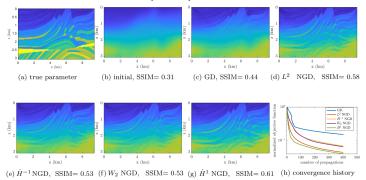


Fig. 5. FWI example: (a) ground truth; (b) initial guess; (c)-(g) inversion results using GD and NGDs based on the L^2 , H^{-1} , W_2 , and H^1 metrics after 400 PDE solves; (h) the history of the objective function decay versus the number of propagations/PDE solves. SSIM denotes the structural

Observations:

- NGD methods yield reconstructions closer to ground truth.
- $ightharpoonup H^1$ NGD achieves best similarity (SSIM = 0.61).

similarity index measure compared with (a). A bigger value means better similarity.

Convergence: NGDs consistently faster than GD.

