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Background

» PDE-constrained optimization arises in inverse problems and
ML-based PDE solvers.

m@in fip(0)), s.t. F(p(d),0) =0 (PDE model)

» Notation:

> §: parameter vector (e.g., discretized coefficients, NN weights).

» p(0): state variable determined by PDE model F.

> f(p(#)): objective/loss measuring mismatch between model
output and observed data.



Background

» Standard Gradient Descent (GD):

6 = —Vofip(6))
Efficient but can be slow and easily trapped in local minima.
» Natural Gradient Descent (NGD):

0 =—G(O) " Vofip(0)),  Gy(6) = <85-p’ %5 >g

Performs steepest descent in the state manifold (M, g), but
computing G(6)~! is expensive in large-scale PDEs.

» Goal: Design efficient NGD schemes that scale to
high-dimensional PDE optimization.



Motivation / Challenges

» Problem: Direct NGD is infeasible in PDE optimization
(huge G(0), no explicit inverse).

» Observation: NGD can be reformulated as a least-squares
problem:

ot — arg min |ver+ JnHZ, J=[0§p,---, 0% pl.

» Derivation (sketch):
» By chain rule: Vyf= JTvgf.
> Metric pullback: G(0) = JTJ.
» NGD system: G(0)n = —Vyf <= normal equations of the
LS problem above.

» Key Challenge: Efficiently solving this LS system at scale.



How to Solve the LS Problem

Recall: NGD reduces to solving the least-squares system

n"t = argmin [|VEf+ Inllg: I =[05,p:---. 05 pl-

» Case 1: J explicit (moderate size).
» Jis a matrix we can store explicitly.
» Classical linear algebra tools apply: QR, SVD.
» Low-rank structure = efficient approximation.

» Case 2: J implicit (PDE constraints).

» In PDE problems, parameter dimension can be 10°-10".
» Jis too large to form or store explicitly.
» What we can compute efficiently:
> Jv: perturb parameter 6 in direction v, solve PDE = state
variation.
> JTv: via adjoint-state method, one additional PDE solve.
> |terative solvers (CG, LSQR) only require Jv and JTv, so they
are the natural choice.



Algorithms for Computing NGD

NGD Algorithms (Explicit vs Implicit Jacobian)

Goal: Compute NGD direction n'L"” in cases 1 and 2.
Algorithm 3.1 (Explicit J)
1. Compute Y= LJ.
2. Perform QR factorization: [Q, R] = qr(Y).
3. Compute NGD direction

npt = —RTIQT(LT) 9,f

Algorithm 3.2 (Operator form of G;)
1. Given constraint h, solve d,hy = —0ghn.
2. Solve 9,hTA = LT Ly.
3. Evaluate —9ph' A = G.7.
Algorithm 3.3 (Implicit J, PDE-scale)
1. Solve (8,h) T\ = 0, f, obtain .
2. Compute parameter gradient gf = —9gh ' .
3. Obtain operator action Gy 7 via Algorithm 3.2.
4. Solve Gmi’at = —0pf using Conjugate Gradient.




NGD under Different Metrics

Metric Formula (gradient in p-space)
L2 VEf=V,f
Sobolev H* Vef=(I—A)*V,f
Fisher-Rao Vef=pV,f
Wasserstein W, Vef=VV,f

» [2: standard Euclidean gradient.

» Sobolev H°: smooths the update, reduces oscillations.

» Fisher-Rao: scale-invariant, common in statistics/ML.

» Wasserstein Wh: linked to optimal transport, mass movement.

Takeaway: The LS reformulation applies to all metrics, making NGD a
unified framework across different geometries.



Geometric Intuition of Metrics

L% (Euclidean) Sobolev H°

B2

H° metric weights high frequencies via

(I— A)®: updates are smoothed,

Level sets are circles (flat geometry). penalizing oscillations in the state.

Steepest descent is the usual Euclidean
negative gradient. LS uses standard

| - |2 (Frobenius) norm.



Geometric Intuition of Metrics

Fisher—Rao Wasserstein W,

P(X) z)/{%? %I

Geometry of mass transport: tangent
vectors are velocity fields v with
X —V-(pv) = ¢. The Riemannian
gradient takes the form V&f= V(V,f);
Inner product (u, v)rr = [ %/ dx = updates move mass along v.
effective gradient V&f= pV,f. regions
with larger p are weighted more

(scale-invariant).



Extensions: Damped NGD

» Problem: Information matrix G; can be

» rank-deficient or ill-conditioned,
> leading to unstable or extreme NGD updates.

» Solution: Add damping for stability:

Gy=M+Gi, A>0.

» Ensures positive definiteness.
» Avoids extreme updates, improves numerical robustness.

» Connection: Levenberg—Marquardt method = damped
Gauss—Newton = L2 NGD in this framework.

» Update rule: In mixed (6, p) metric space:

o — arg mein {f(p(ﬂ)) + /\de(9,9’)2+gp(p(9),p(9’))2 }

T



Extensions: Damped NGD

> Generalization: Use another p-space metric for regularization
instead of #-space.

o — arg min {f(p(&)) L My (p(6).p(6)+-dp, (p(6).p(61))? }

2T

» Here:

» d,, = main natural gradient metric,
» d,, = regularizing metric.

» Interpretation: H' NGD damped by L2 NGD (regularization
strength set by \).
» Takeaway: Damping provides a flexible stabilization

mechanism, unifying NGD with classical methods such as
Gauss—Newton and Levenberg—Marquardt.



Experimental Setup

» Tasks: PDE-constrained optimization problems

» Gaussian mixture inversion
» Physics-Informed Neural Networks (PINNs)
» Full Waveform Inversion (FWI)

» Methods compared:

» Gradient Descent (GD)
» Natural Gradient Descent (NGD) with metrics:

L2, H', H' Fisher-Rao (FR), W,
» Evaluation criteria:

> Convergence path and trajectory (visualization)
» Loss decay vs iterations and wall-clock time
» Reconstruction quality (SSIM for FWI, error vs ground truth)

» Implementation: NGD directions computed via LS
formulation with explicit/implicit Jacobian.



Gaussian Mixture Example
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F1G. 2. Gaussian mizture ezample: Level sets, vector fields, and convergent paths using GD
and different NGD methods to invert pi. All algorithms start from initial guess (5,3).

» Observation:

» GD: slow convergence, oscillatory path.
» NGD: faster and smoother trajectories.
» Different metrics yield different geometry of descent:
» [2: standard Euclidean updates.
» FR: scale-invariant steps.
> H': smooths oscillations in updates.
> H™': emphasizes large-scale structure.
» Wh: mass-transport interpretation, very different path.



Local Quadratic Models

4 |
I
|
| \‘
“\H\H , \H\H
B el © :

(a) Standard gradient descent (b) L? natural gradient (c) W2 natural gradient

FIG. 3. The local quadratic models of GD, L?> NGD, and W2 NGD in the first several iterations.

Compare GD, L% NGD, and W, NGD in the first iterations.
GD: isotropic quadratic model, ignores geometry.
L2 NGD: improves conditioning, balanced ellipses.

W, NGD: anisotropic ellipses capturing transport geometry.
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Takeaway: NGD changes local landscape, leading to better-conditioned
descent directions.



PINN Results

1 Ground Truth u(z), o = [ o]l Loss vs. Iteration Loss vs. Wall clock time
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Fic. 4. (a) PINN ezample true solution; (b) loss function value decay in terms of the number
of iterations; (c) loss function value decay in terms of the wall clock time.

» Physics-Informed Neural Network (PINN) example.
»> Observations:

» NGD accelerates convergence significantly compared to GD.

» Sobolev H' and Wasserstein W, metrics yield smoother, more
stable decay.

» Consistent improvements both in iteration count and actual
runtime.



Full Waveform Inver5|on (FWI) Results
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Fic. 5. FWI ezample (a) ground truth; (b) initial guess; (c)—(g) inversion results using GD
and NGDs based on the L2, H=Y, Wa, and H' metrics after 400 PDE solves; (h) the history of the
objective function decay versus the number of propagations/PDE solves. SSIM denotes the structural
similarity index measure compared with (a). A bigger value means better similarity.

» Observations:

NGD methods yield reconstructions closer to ground truth.

> H' NGD achieves best similarity (SSIM = 0.61).

» Convergence: NGDs consistently faster than GD.
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