
Efficient Natural Gradient Descent Methods for
Large-Scale PDE-Based Optimization Problems

Based on Levon Nurbekyan, Wanzhou Lei, and Yunan Yang

SIAM J. Sci. Comput., 2023



Background

▶ PDE-constrained optimization arises in inverse problems and
ML-based PDE solvers.

min
θ

f(ρ(θ)), s.t. F(ρ(θ), θ) = 0 (PDE model)

▶ Notation:
▶ θ: parameter vector (e.g., discretized coefficients, NN weights).
▶ ρ(θ): state variable determined by PDE model F .
▶ f(ρ(θ)): objective/loss measuring mismatch between model

output and observed data.



Background

▶ Standard Gradient Descent (GD):

θ̇ = −∇θf(ρ(θ))

Efficient but can be slow and easily trapped in local minima.
▶ Natural Gradient Descent (NGD):

θ̇ = −G(θ)−1∇θf(ρ(θ)), Gij(θ) =
〈
∂g
θi
ρ, ∂g

θj
ρ
〉

g

Performs steepest descent in the state manifold (M, g), but
computing G(θ)−1 is expensive in large-scale PDEs.

▶ Goal: Design efficient NGD schemes that scale to
high-dimensional PDE optimization.



Motivation / Challenges

▶ Problem: Direct NGD is infeasible in PDE optimization
(huge G(θ), no explicit inverse).

▶ Observation: NGD can be reformulated as a least-squares
problem:

ηnat = arg min
η

∥∥∇g
ρf + Jη

∥∥2
g, J = [∂g

θ1
ρ, . . . , ∂g

θp
ρ].

▶ Derivation (sketch):
▶ By chain rule: ∇θf = J⊤∇g

ρf.
▶ Metric pullback: G(θ) = J⊤J.
▶ NGD system: G(θ)η = −∇θf ⇐⇒ normal equations of the

LS problem above.
▶ Key Challenge: Efficiently solving this LS system at scale.



How to Solve the LS Problem
Recall: NGD reduces to solving the least-squares system

ηnat = arg min
η

∥∇g
ρf + Jη∥2g, J = [∂g

θ1
ρ, . . . , ∂g

θp
ρ].

▶ Case 1: J explicit (moderate size).
▶ J is a matrix we can store explicitly.
▶ Classical linear algebra tools apply: QR, SVD.
▶ Low-rank structure ⇒ efficient approximation.

▶ Case 2: J implicit (PDE constraints).
▶ In PDE problems, parameter dimension can be 105–109.
▶ J is too large to form or store explicitly.
▶ What we can compute efficiently:

▶ Jv: perturb parameter θ in direction v, solve PDE ⇒ state
variation.

▶ J⊤v: via adjoint-state method, one additional PDE solve.
▶ Iterative solvers (CG, LSQR) only require Jv and J⊤v, so they

are the natural choice.



Algorithms for Computing NGD
NGD Algorithms (Explicit vs Implicit Jacobian)

Goal: Compute NGD direction ηnat
L in cases 1 and 2.

Algorithm 3.1 (Explicit J)
1. Compute Y = LJ.
2. Perform QR factorization: [Q,R] = qr(Y).
3. Compute NGD direction

ηnat
L = −R−1Q⊤(L⊤)† ∂ρf.

Algorithm 3.2 (Operator form of GL)
1. Given constraint h, solve ∂ρh γ = −∂θh η.
2. Solve ∂ρh⊤λ = L⊤Lγ.
3. Evaluate −∂θh⊤λ = GLη.

Algorithm 3.3 (Implicit J, PDE-scale)
1. Solve (∂ρh)⊤λ = ∂ρf, obtain λ.
2. Compute parameter gradient ∂θf = −∂θh⊤λ.
3. Obtain operator action GLη via Algorithm 3.2.
4. Solve GLηnat

L = −∂θf using Conjugate Gradient.



NGD under Different Metrics

Metric Formula (gradient in ρ-space)
L2 ∇g

ρf = ∇ρf
Sobolev Hs ∇g

ρf = (I −∆)s∇ρf
Fisher–Rao ∇g

ρf = ρ∇ρf
Wasserstein W2 ∇g

ρf = ∇∇ρf

▶ L2: standard Euclidean gradient.
▶ Sobolev Hs: smooths the update, reduces oscillations.
▶ Fisher–Rao: scale-invariant, common in statistics/ML.
▶ Wasserstein W2: linked to optimal transport, mass movement.

Takeaway: The LS reformulation applies to all metrics, making NGD a
unified framework across different geometries.



Geometric Intuition of Metrics

L2 (Euclidean)

θ1

θ2

θ
−∇θf

Level sets are circles (flat geometry).
Steepest descent is the usual Euclidean
negative gradient. LS uses standard
∥ · ∥2 (Frobenius) norm.

Sobolev Hs

x

u(x)
oscillatory
smoothed

Hs metric weights high frequencies via
(I −∆)s: updates are smoothed,
penalizing oscillations in the state.



Geometric Intuition of Metrics

Fisher–Rao

x

ρ(x)

Inner product ⟨u, v⟩FR =
∫ uv

ρ
dx ⇒

effective gradient ∇g
ρf = ρ∇ρf: regions

with larger ρ are weighted more
(scale-invariant).

Wasserstein W2

Geometry of mass transport: tangent
vectors are velocity fields v with
−∇· (ρv) = ζ. The Riemannian
gradient takes the form ∇g

ρf = ∇(∇ρf);
updates move mass along v.



Extensions: Damped NGD
▶ Problem: Information matrix GL can be

▶ rank-deficient or ill-conditioned,
▶ leading to unstable or extreme NGD updates.

▶ Solution: Add damping for stability:

Gλ = λI + GL, λ > 0.

▶ Ensures positive definiteness.
▶ Avoids extreme updates, improves numerical robustness.

▶ Connection: Levenberg–Marquardt method = damped
Gauss–Newton = L2 NGD in this framework.

▶ Update rule: In mixed (θ, ρ) metric space:

θl+1 = arg min
θ

{
f(ρ(θ)) + λdθ(θ,θ

l)2+dρ(ρ(θ),ρ(θl))2

2τ

}
.



Extensions: Damped NGD

▶ Generalization: Use another ρ-space metric for regularization
instead of θ-space.

θl+1 = arg min
θ

{
f(ρ(θ)) + λdρ1 (ρ(θ),ρ(θ

l))2+dρ2 (ρ(θ),ρ(θ
l))2

2τ

}
.

▶ Here:
▶ dρ2

= main natural gradient metric,
▶ dρ1

= regularizing metric.

▶ Interpretation: H1 NGD damped by L2 NGD (regularization
strength set by λ).

▶ Takeaway: Damping provides a flexible stabilization
mechanism, unifying NGD with classical methods such as
Gauss–Newton and Levenberg–Marquardt.



Experimental Setup
▶ Tasks: PDE-constrained optimization problems

▶ Gaussian mixture inversion
▶ Physics-Informed Neural Networks (PINNs)
▶ Full Waveform Inversion (FWI)

▶ Methods compared:
▶ Gradient Descent (GD)
▶ Natural Gradient Descent (NGD) with metrics:

L2, H1, H−1, Fisher–Rao (FR), W2

▶ Evaluation criteria:
▶ Convergence path and trajectory (visualization)
▶ Loss decay vs iterations and wall-clock time
▶ Reconstruction quality (SSIM for FWI, error vs ground truth)

▶ Implementation: NGD directions computed via LS
formulation with explicit/implicit Jacobian.



Gaussian Mixture Example

▶ Observation:
▶ GD: slow convergence, oscillatory path.
▶ NGD: faster and smoother trajectories.
▶ Different metrics yield different geometry of descent:

▶ L2: standard Euclidean updates.
▶ FR: scale-invariant steps.
▶ H1: smooths oscillations in updates.
▶ H−1: emphasizes large-scale structure.
▶ W2: mass-transport interpretation, very different path.



Local Quadratic Models

▶ Compare GD, L2 NGD, and W2 NGD in the first iterations.
▶ GD: isotropic quadratic model, ignores geometry.
▶ L2 NGD: improves conditioning, balanced ellipses.
▶ W2 NGD: anisotropic ellipses capturing transport geometry.
▶ Takeaway: NGD changes local landscape, leading to better-conditioned

descent directions.



PINN Results

▶ Physics-Informed Neural Network (PINN) example.
▶ Observations:

▶ NGD accelerates convergence significantly compared to GD.
▶ Sobolev H1 and Wasserstein W2 metrics yield smoother, more

stable decay.
▶ Consistent improvements both in iteration count and actual

runtime.



Full Waveform Inversion (FWI) Results

▶ Observations:
▶ NGD methods yield reconstructions closer to ground truth.
▶ H1 NGD achieves best similarity (SSIM = 0.61).
▶ Convergence: NGDs consistently faster than GD.


	Introduction

