
ISLET: Fast and Optimal Low-Rank Tensor
Regression via Importance Sketching

Anru R. Zhang Yuetian Luo Garvesh Raskutti Ming
Yuan

SIAM J. Mathematics of Data Science (SIMODS), 2020
DOI: 10.1137/19M126476X



Limitations of Existing Tensor Regression

Tensor regression model:

yi = ⟨Xi,B⟩+ εi, Xi ∈ Rp1×···×pd , B ∈ Rp1×···×pd .

Existing regularization methods:
▶ Convex surrogates (nuclear norms): statistically accurate,

but need repeated SVDs on large unfoldings ⇒ extremely
slow.

▶ Nonconvex factorizations: computationally cheaper, but
sensitive to initialization and with weaker guarantees.



Model
▶ For convenience, we focus on order-3 low-rank tensor

regression:

yi = ⟨A,Xi⟩+ εi, i = 1, . . . , n.

▶ Here, A is Tucker low-rank: A = S ×1 U1 ×2 U2 ×3 U3, where
S ∈ Rr1×r2×r3 , Uk ∈ Rpk×rk , k = 1, 2, 3.

▶ Goal: estimate A based on {yi,Xi}ni=1.



Step 1. Probing Importance Sketching Direction
▶ (Step 1.1) Evaluate the sample covariance tensor:

Ã = 1
n

n∑
i=1

yiXi

▶ (Step 1.2) Apply high-order orthogonal iteration (HOOI) to
obtain a low-rank factorization:

Ã ≈ S̃ ×1 Ũ1 ×2 Ũ2 ×3 Ũ3

▶ (Step 1.3) Perform QR orthogonalization:

Ṽk = QR
(
M⊤

k (S̃)
)
.

▶ Outcome: {Ũk, Ṽk}3k=1.



Interpretations of Step 1

Mk(A) ≈ ŨkΣ̃kW̃⊤
k , W̃k = (Ũk+2 ⊗ Ũk+1)Ṽk.

▶ {Ũk, W̃k} are importance sketching directions.
▶ They are initial sample approximations of {Uk,Wk}, i.e.

left/right singular subspaces of Mk(A).
▶ They best align with the true tensor A.



Step 2. Importance Sketching

▶ Construct dimension-reduced covariates:

X̂B[i, :] = vec
(
Xi ×1 Ũ⊤

1 ×2 Ũ⊤
2 ×3 Ũ⊤

3

)
,

X̂Dk [i, :] = vec
(

Ũ⊤
k⊥Mk(Xi) W̃k

)
, k = 1, 2, 3.

▶ These sketches reduce both sample and feature dimensions.



Interpretation of Step 2

γ̃ =


vec(B̃)
vec(D̃1)

vec(D̃2)

vec(D̃3)

 ,

B̃ := A×1 Ũ⊤
1 ×2 Ũ⊤

2 ×3 Ũ⊤
3 ,

D̃1 := Ũ⊤
1⊥M1(A) W̃1,

D̃2 := Ũ⊤
2⊥M2(A) W̃2,

D̃3 := Ũ⊤
3⊥M3(A) W̃3.

▶ Rewrite the regression model:

yi = ⟨Xi,A⟩+ εi = X̃[i, :]⊤γ̃ + ε̃i,

where

X̃ = [X̂B, X̂D1 , X̂D2 , X̂D3 ], γ̃ = [vec(B̃), vec(D̃1), vec(D̃2), vec(D̃3)].

▶ X̃ are sketching covariates.
▶ γ̃ is the sketch of A.



Step 3. Dimension-Reduced Regression
▶ Perform regression in reduced space:

γ̂ = arg min
γ
∥y− X̃γ∥22.

▶ Dimension of parameter reduces from p1p2p3 to

m = r1r2r3 +
3∑

k=1

(pk − rk)rk.



Step 4. Assembling the Final Estimate
▶ Reconstruct Â via the Cross scheme (Z. AoS, 2018):

Â = B̂ ×1 L̂1 ×2 L̂2 ×3 L̂3,

where each
L̂k =

(
ŨkMk(B̂)Ṽk + Ũk⊥D̂k

)(
Mk(B̂)Ṽk

)−1
, k = 1, 2, 3.



Algorithm: ISLET (Summary)
ISLET (Importance Sketching for Tensor Regression)

Input: samples {(Xi, yi)}n
i=1, target ranks (r1, r2, r3)

Output: estimate Â

Step 1: Probing directions
Ã ← 1

n
∑n

i=1 yi Xi
(S̃, Ũ1, Ũ2, Ũ3)← HOOI(Ã; r1, r2, r3)
Ṽk ← QR

(
Mk(S̃)⊤

)
for k = 1, 2, 3

Step 2: Importance sketching (build reduced covariates)
X̂B[i, :]←vec

(
Xi ×1 Ũ⊤

1 ×2 Ũ⊤
2 ×3 Ũ⊤

3

)
W̃k ← (Ũk+2⊗Ũk+1) Ṽk, k = 1, 2, 3

X̂Dk [i, :]←vec
(
Ũ⊤

k⊥Mk(Xi) W̃k
)
, k = 1, 2, 3

X̃← [ X̂B, X̂D1
, X̂D2

, X̂D3
]

Step 3: Dimension-reduced regression
γ̂ ← arg minγ ∥y− X̃γ∥22 (use Group Lasso if sparse)

Step 4: Assemble estimate
Reconstruct Â from γ̂ and (Ũk, Ṽk) via the Cross
scheme.



Oracle Inequalities (General Design)

Theorem (Oracle Inequality)
Consider order-3 tensor regression with low Tucker rank (r1, r2, r3).
Under mild conditions (angle error θ < 1

2 , nonsingular sketches, GRIP in
the sparse case), the ISLET estimator satisfies

∥Â − A⋆∥2HS ≤ C
(

σ2m
n + bias(θ)

)
,

where m = r1r2r3 +
∑3

k=1(pk − rk)rk.

Takeaway. Error decomposes as variance O(m/n) plus controlled
sketching bias.



Optimal Risk under Gaussian Design

Theorem (Minimax Risk under Gaussian Design)
Suppose the observed variables is i.i.d. Gaussian and the noise is
N (0, σ2). Then

E∥Â − A⋆∥2HS = (1 + o(1))mσ2

n , m = r1r2r3 +
3∑

k=1

(pk − rk)rk.

Takeaway. Achieves minimax-optimal rate with sharp constant; m equals
the degrees of freedom of the Tucker rank class.



Simulation Study: Experimental Setup

Goal. Evaluate the performance of ISLET under synthetic low-rank
tensor regression.
Data Generation.
▶ Covariates: Xj ∈ Rp×p×p with i.i.d. N (0, 1) entries.
▶ Coefficient tensor:

A = JS;E1,E2,E3K
- Nonsparse setting: S and Ek Gaussian random. - Sparse setting:
rows of Ek randomly zeroed out, sparsity level sk.

▶ Responses: yj = ⟨Xj,A⟩+ εj, εj ∼ N (0, σ2).

Evaluation.
▶ Normalized RMSE: ∥Â − A∥HS/∥A∥HS.
▶ Results averaged over 100 repetitions.



Simulation Study: Results



Simulation Study: Results


