ISLET: Fast and Optimal Low-Rank Tensor Regression via Importance Sketching

Anru R. Zhang Yuetian Luo Garvesh Raskutti Ming Yuan

SIAM J. Mathematics of Data Science (SIMODS), 2020 DOI: 10.1137/19M126476X

Limitations of Existing Tensor Regression

Tensor regression model:

$$y_{i} = \langle \mathcal{X}_{i}, \mathcal{B} \rangle + \varepsilon_{i}, \quad \mathcal{X}_{i} \in \mathbb{R}^{p_{1} \times \dots \times p_{d}}, \ \mathcal{B} \in \mathbb{R}^{p_{1} \times \dots \times p_{d}}.$$

$$y_{i} \qquad \mathcal{A} \qquad \mathcal{X}_{i} \qquad \varepsilon_{i}$$

$$= \langle \mathcal{A} \qquad \mathcal{A}$$

Existing regularization methods:

- Convex surrogates (nuclear norms): statistically accurate, but need repeated SVDs on large unfoldings ⇒ extremely slow.
- ▶ **Nonconvex factorizations:** computationally cheaper, but sensitive to initialization and with weaker guarantees.

Model

For convenience, we focus on order-3 low-rank tensor regression:

▶ Here, \mathcal{A} is Tucker low-rank: $\mathcal{A} = \mathcal{S} \times_1 U_1 \times_2 U_2 \times_3 U_3$, where $\mathcal{S} \in \mathbb{R}^{r_1 \times r_2 \times r_3}$, $U_k \in \mathbb{R}^{p_k \times r_k}$, k = 1, 2, 3.

▶ **Goal:** estimate \mathcal{A} based on $\{y_i, \mathcal{X}_i\}_{i=1}^n$.

Step 1. Probing Importance Sketching Direction

▶ (Step 1.1) Evaluate the sample covariance tensor:

$$\widetilde{\mathcal{A}} = \frac{1}{n} \sum_{i=1}^{n} y_i \mathcal{X}_i$$

► (Step 1.2) Apply high-order orthogonal iteration (HOOI) to obtain a low-rank factorization:

$$\widetilde{\mathcal{A}} \approx \widetilde{\mathcal{S}} \times_1 \widetilde{U}_1 \times_2 \widetilde{U}_2 \times_3 \widetilde{U}_3$$

► (Step 1.3) Perform QR orthogonalization:

$$\widetilde{V}_k = \mathrm{QR}\Big(\mathcal{M}_k^{\top}(\widetilde{\mathcal{S}})\Big)$$
.

▶ Outcome: $\{\widetilde{U}_k, \widetilde{V}_k\}_{k=1}^3$.

Interpretations of Step 1

$$\mathcal{M}_k(\mathcal{A}) \approx \widetilde{U}_k \widetilde{\Sigma}_k \widetilde{W}_k^{\top}, \quad \widetilde{W}_k = (\widetilde{U}_{k+2} \otimes \widetilde{U}_{k+1}) \widetilde{V}_k.$$

- ▶ $\{\widetilde{U}_k, \widetilde{W}_k\}$ are importance sketching directions.
- They are initial sample approximations of $\{U_k, W_k\}$, i.e. left/right singular subspaces of $\mathcal{M}_k(\mathcal{A})$.
- ▶ They best align with the true tensor A.

Step 2. Importance Sketching

Construct dimension-reduced covariates:

$$\begin{split} \widehat{X}_{\mathcal{B}}[i,:] &= \operatorname{vec} \left(\mathcal{X}_i \times_1 \ \widetilde{U}_1^\top \times_2 \ \widetilde{U}_2^\top \times_3 \ \widetilde{U}_3^\top \right), \\ \widehat{X}_{D_k}[i,:] &= \operatorname{vec} \left(\widetilde{U}_{k\perp}^\top \mathcal{M}_k(\mathcal{X}_i) \ \widetilde{W}_k \right), \quad k = 1, 2, 3. \end{split}$$

These sketches reduce both sample and feature dimensions.

Interpretation of Step 2

Rewrite the regression model:

$$y_i = \langle \mathcal{X}_i, \mathcal{A} \rangle + \varepsilon_i = \widetilde{X}[i, :]^{\top} \widetilde{\gamma} + \widetilde{\varepsilon}_i,$$

where

$$\widetilde{\boldsymbol{X}} = [\widehat{\boldsymbol{X}}_{\mathcal{B}}, \widehat{\boldsymbol{X}}_{D_1}, \widehat{\boldsymbol{X}}_{D_2}, \widehat{\boldsymbol{X}}_{D_3}], \quad \widetilde{\boldsymbol{\gamma}} = [\operatorname{vec}(\widetilde{\mathcal{B}}), \operatorname{vec}(\widetilde{D}_1), \operatorname{vec}(\widetilde{D}_2), \operatorname{vec}(\widetilde{D}_3)].$$

- $ightharpoonup \widetilde{X}$ are sketching covariates.
- $ightharpoonup \widetilde{\gamma}$ is the sketch of \mathcal{A} .

Step 3. Dimension-Reduced Regression

▶ Perform regression in reduced space:

$$\widehat{\gamma} = \arg\min_{\gamma} \|y - \widetilde{X}\gamma\|_2^2.$$

▶ Dimension of parameter reduces from $p_1p_2p_3$ to

$$m = r_1 r_2 r_3 + \sum_{k=1}^{3} (p_k - r_k) r_k.$$

$$\hat{\gamma} = \underset{\gamma}{\operatorname{argmin}} \| y - \widetilde{X} \gamma \|_2^2, \quad \widetilde{X} = \left[\widetilde{X}_{\mathcal{B}} \ \widetilde{X}_{D_1} \ \widetilde{X}_{D_2} \ \widetilde{X}_{D_3} \right]$$

$$y \approx X_{\mathcal{B}} \hat{\gamma}_{\mathcal{B}} + X_{D_1} \hat{\gamma}_{D_1} + X_{D_2} \hat{\gamma}_{D_2} + X_{D_3} \hat{\gamma}_{D_3}$$

$$\vdots \approx \vdots \qquad \times$$

Step 4. Assembling the Final Estimate

▶ Reconstruct \widehat{A} via the **Cross scheme** (Z. AoS, 2018):

$$\widehat{\mathcal{A}} = \widehat{\mathcal{B}} \times_1 \widehat{\mathcal{L}}_1 \times_2 \widehat{\mathcal{L}}_2 \times_3 \widehat{\mathcal{L}}_3,$$

where each $\widehat{L}_{\textit{k}} = \big(\widetilde{\textit{U}}_{\textit{k}}\mathcal{M}_{\textit{k}}(\widehat{\mathcal{B}})\widetilde{\textit{V}}_{\textit{k}} + \widetilde{\textit{U}}_{\textit{k}\perp}\widehat{\textit{D}}_{\textit{k}}\big)\big(\mathcal{M}_{\textit{k}}(\widehat{\mathcal{B}})\widetilde{\textit{V}}_{\textit{k}}\big)^{-1}, \quad \textit{k} = 1, 2, 3.$

Algorithm: ISLET (Summary)

ISLET (Importance Sketching for Tensor Regression)

Input: samples $\{(\mathcal{X}_i, y_i)\}_{i=1}^n$, target ranks (r_1, r_2, r_3)

Output: estimate $\widehat{\mathcal{A}}$

Step 1: Probing directions

$$\begin{split} \widetilde{\mathcal{A}} &\leftarrow \frac{1}{n} \sum_{i=1}^{n} y_{i} \mathcal{X}_{i} \\ (\widetilde{\mathcal{S}}, \widetilde{U}_{1}, \widetilde{U}_{2}, \widetilde{U}_{3}) &\leftarrow \text{HOOI}(\widetilde{\mathcal{A}}; r_{1}, r_{2}, r_{3}) \\ \widetilde{V}_{k} &\leftarrow \text{QR}(\mathcal{M}_{k}(\widetilde{\mathcal{S}})^{\top}) \text{ for } k = 1, 2, 3 \end{split}$$

Step 2: Importance sketching (build reduced covariates)

$$\begin{split} \widehat{X}_{\mathcal{B}}[i,:] &\leftarrow \operatorname{vec}\left(\mathcal{X}_{i} \times_{1} \widetilde{U}_{1}^{\top} \times_{2} \widetilde{U}_{2}^{\top} \times_{3} \widetilde{U}_{3}^{\top}\right) \\ \widetilde{W}_{k} &\leftarrow \left(\widetilde{U}_{k+2} \otimes \widetilde{U}_{k+1}\right) \widetilde{V}_{k}, \quad k = 1, 2, 3 \\ \widehat{X}_{D_{k}}[i,:] &\leftarrow \operatorname{vec}\left(\widetilde{U}_{k\perp}^{\top} \mathcal{M}_{k}(\mathcal{X}_{i}) \widetilde{W}_{k}\right), \quad k = 1, 2, 3 \\ \widetilde{X} &\leftarrow \left[\widehat{X}_{\mathcal{B}}, \widehat{X}_{D_{1}}, \widehat{X}_{D_{2}}, \widehat{X}_{D_{3}}\right] \end{split}$$

Step 3: Dimension-reduced regression

$$\widehat{\gamma} \leftarrow \arg\min_{\gamma} \|y - \widetilde{X}\gamma\|_2^2$$
 (use Group Lasso if sparse)

Step 4: Assemble estimate

Reconstruct $\widehat{\mathcal{A}}$ from $\widehat{\gamma}$ and $(\widetilde{U}_k, \widetilde{V}_k)$ via the Cross scheme.

Oracle Inequalities (General Design)

Theorem (Oracle Inequality)

Consider order-3 tensor regression with low Tucker rank (r_1, r_2, r_3) . Under mild conditions (angle error $\theta < \frac{1}{2}$, nonsingular sketches, GRIP in the sparse case), the ISLET estimator satisfies

$$\|\widehat{\mathcal{A}} - \mathcal{A}^{\star}\|_{\mathrm{HS}}^{2} \leq C\left(\frac{\sigma^{2}m}{n} + bias(\theta)\right),$$

where
$$m = r_1 r_2 r_3 + \sum_{k=1}^{3} (p_k - r_k) r_k$$
.

Takeaway. Error decomposes as variance O(m/n) plus controlled sketching bias.

Optimal Risk under Gaussian Design

Theorem (Minimax Risk under Gaussian Design)

Suppose the observed variables is i.i.d. Gaussian and the noise is $\mathcal{N}(0,\sigma^2).$ Then

$$\mathbb{E}\|\widehat{\mathcal{A}} - \mathcal{A}^{\star}\|_{\mathrm{HS}}^{2} = (1 + o(1))\frac{m\sigma^{2}}{n}, \qquad m = r_{1}r_{2}r_{3} + \sum_{k=1}^{3}(p_{k} - r_{k})r_{k}.$$

Takeaway. Achieves minimax-optimal rate with sharp constant; m equals the degrees of freedom of the Tucker rank class.

Simulation Study: Experimental Setup

Goal. Evaluate the performance of ISLET under synthetic low-rank tensor regression.

Data Generation.

- ▶ Covariates: $\mathcal{X}_j \in \mathbb{R}^{p \times p \times p}$ with i.i.d. $\mathcal{N}(0,1)$ entries.
- Coefficient tensor:

$$\mathcal{A} = \llbracket \mathcal{S}; \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3 \rrbracket$$

- Nonsparse setting: S and E_k Gaussian random. Sparse setting: rows of E_k randomly zeroed out, sparsity level s_k .
- ▶ Responses: $y_j = \langle \mathcal{X}_j, \mathcal{A} \rangle + \varepsilon_j$, $\varepsilon_j \sim \mathcal{N}(0, \sigma^2)$.

Evaluation.

- Normalized RMSE: $\|\widehat{\mathcal{A}} \mathcal{A}\|_{\mathrm{HS}} / \|\mathcal{A}\|_{\mathrm{HS}}$.
- ▶ Results averaged over 100 repetitions.

Simulation Study: Results

Simulation Study: Results

