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Hyperspectral Images (HSIs)

Hyperspectral Images (HSIs) contain wealthy spatial-spectral
knowledge and have been widely used in many applications, such
as material identification, mineral detection, and forest inspection.
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Degradation of HSIs

Due to the limitations of imaging devices and environment, HSIs in
real applications always suffer from various noises, such as
Gaussian noise, sparse noise, and stripes.

Gaussian noise Sparse noise
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Mainstream priors for HSIs

HSIs have rich spatial-spectral correlations that can be leveraged
for effective HSIs denoising:

1 piecewise smoothness;
2 nonlocal self-similarity;
3 low-rankness;
4 · · ·
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Tensor singular values decomposition

HSI can be naturally represented by a third-order tensor X with
two spatial dimensions and one spectral dimension.

Spatial
︸ ︷︷ ︸

Spatial
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(i, j, k)-th entry

tensor X ∈ Rn1×n2×n3

Tensor singular values decomposition (t-SVD) can capture the
low-rankness of the third-order tensor, which has obtained the
promising results for HSIs denoising.
Misha E. Kilmer and Carla D. Martin, Factorization strategies for third-order tensors,
Linear Algebra and its Applications, vol. 435, pp. 641-658, 2011.
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Tensor singular values decomposition

t-SVD and tubal-rank
The t-SVD of X is

X = U ∗ S ∗ VH ,

where U and V are orthogonal tensors, S is the f-diagonal tensor, and
VH denotes the conjugate transpose of V. Herein, the tubal rank of X is
defined as the number of non-zero tubes of S.
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Tensor nuclear norm

Tensor nuclear norm (TNN)
The TNN of X ∈ Rn1×n2×n3 is denoted by ∥X∥TNN , which is defined as

∥X∥TNN =

n3∑
k=1

∥Zk∥∗,

where Zk ∈ Cn1×n2 is the kth frontal slice of Z ∈ Cn1×n2×n3 , and
Z = X ×3 Fn3

is the transformed tensor of X under the discrete Fourier
transform (DFT) Fn3 ∈ Cn3×n3 , and ×3 denotes the matrix-tensor
product.

C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor Robust Principal
Component Analysis with a New Tensor Nuclear Norm, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 4, pp. 925-938, 2020.
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Group-tube transform based TNN

Group-tube transform based TNN (GTNN)
Given a target tensor X ∈ Rn1×n2×n3 , its GTNN is denoted by
∥X∥GTNN . Formally, we have

∥X∥GTNN ≜
ñ3∑
k=1

∥Zk∥∗ , k = 1, . . . , ñ3

where Zk =
w∑

j=1
Wk,j ⊛ (X ×3 D)k is the kth frontal slice of

Z ∈ Rn1×n2×ñ3 ,Z is the transformed tensor, (X ×3 D)k is the k
th frontal slice of X ×3 D, Wk,j is the 2D filters, and ⊛ denotes
the convolution.
B.-Z. Li, X.-L. Zhao, X. Zhang, T.-Y. Ji, X. Chen, Michael K. Ng, A Learnable
Group-Tube Transform Induced Tensor Nuclear Norm and Its Application for Tensor
Completion, SIAM Journal on Imaging Sciences, vol. 16, pp. 1370-1397, 2023. 11 / 24
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Transformed Sparsity and Low-rankness

The transform-based TNN methods only exploit the transformed
low-rankness.
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GTCSLR

Given a noisy tensor Y ∈ Rn1×n2×n3 , we propose group-tube
transform induced collaborative sparsity and low-rankness
(GTCSLR) for HSI mixed noise removal:

min
X ,Z,E,S
M,D,W

ñ3∑
k=1

(
∥Zk∥∗ + λ1 ∥Ek∥1

)
+ λ2∥S∥1

s.t. ∥Y − X − S∥2F ≤ ϵ,X = M×3 D⊤,

Zk = Wk ⊛ Mk,Ek = Wk ⊛ Mk,

for k = 1, 2, · · · , ñ3,

where X is the clean HSI, S is the sparse noise, M is the spectral
transformed tensor, Mk is the k th frontal slice of M, Z is the
low-rank tensor, E is the sparse tensor, and Zk and Ek is k-th
frontal slice of Z and E , respectively.
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PAM algorithm for GTCSLR

We update each variable alternatively under proximal alternating
minimization (PAM) algorithm framework.
• Zk subproblem:

Zt+1
k = T 1

γ+ρ

(γWt
k ⊛ Mt

k + ρZt
k

γ + ρ

)
, k = 1, · · · , ñ3,

• Ek subproblem:

Et+1
k = S λ1

µ+ρ

(µWt
k ⊛ Mt

k + ρEt
k

γ + ρ

)
, k = 1, · · · , ñ3.

• S subproblem:

St+1 = S λ2
µ+ρ

(α(Y − X t+1) + ρSt

α+ ρ

)
.
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PAM algorithm for GTCSLR

• M subproblem:

Mt+1 = F−1
((γ + µ)F−1(Wt

k)F(Ht
k) + (β + ρ)F(Rt

k)

(γ + ρ)F−1(Wt
k)F(Wt

k) + (β + ρ)I

)
,

where Ht
k =

γZt+1
k +µEt+1

k
γ+µ and Rt

k =
β(X t+1×3Dt)k+ρMt

k
β+ρ ;

• Wk subproblem:

Wt+1
k,j = F−1

((γ + µ)F−1(Qt
k)F(Mt+1

k ) + (β + ρ)F(Rt
k)

(γ + ρ)F−1(Qt
k)F(Qt

k) + (β + ρ)I

)
,

where Qt
k=

γZt+1
k +µEt+1

k
γ+µ −

∑
i ̸=j

Wk,j ⊛ Mt+1
k , j = 1, · · · , w;
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PAM algorithm for GTCSLR

• X subproblem:

X t+1 =
α(Y − St) + βMt ×3 Dt⊤ + ρX t

α+ β + γ

• D subproblem:
Dt+1 = VU⊤,

where U and V are left and right singular vectors of the following
SVD:

βXt+1
(3) (M(3))

⊤ + ρDt = UΣV⊤.
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Compared Methods and Datasets

• Compared methods:
1 BM4D [Maggioni et al. IEEE TIP 2013]
2 LRMR [Zhang et al. IEEE TGRS 2014]
3 LRTR [Fan et al. IEEE J-STARS 2017]
4 3DTNN [Zheng et al. IEEE TGRS 2020]
5 GTNN [Li et al. SIIMS 2023]

• Dtasets:
1 Washington DC Mall (256× 256× 100)

2 Pavia City (200× 200× 80)

• Metrics: PSNR ↑, SSIM ↑, and SAM ↓.
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Numerical results

Datasets Washington DC Mall Pavia City
Cases Case 1 Case2 Case 1 Case2

Indicators PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM
Noisy 13.752 0.2239 34.928 13.032 0.1854 37.219 14.218 0.2453 40.776 13.255 0.1882 42.528
BM4D 26.876 0.7378 11.432 24.289 0.6647 15.236 25.590 0.7153 13.226 23.245 0.6849 16.884
LRMR 33.639 0.9402 4.173 30.966 0.8704 4.664 32.133 0.8920 7.016 30.361 0.8288 11.570
LRTR 34.095 0.9533 2.640 31.789 0.8907 4.105 35.322 0.9635 4.380 27.113 0.8396 17.301

3DTNN 35.973 0.9617 3.361 32.956 0.9076 4.036 35.208 0.9554 6.084 28.285 0.8608 11.073
GTNN 36.422 0.9645 2.261 32.782 0.9092 4.255 38.059 0.9742 4.481 31.669 0.9190 7.602

GTCSLR 37.068 0.9679 2.110 33.190 0.9139 4.005 38.411 0.9752 4.323 32.144 0.9226 6.846

Observed BM4D LRMR LRTR 3DTNN GTNN GTCSLR Original

21 / 24



Background and Motivation The Proposed Model and Algorithm Experimental results Conclusion

1 Background and Motivation

2 The Proposed Model and Algorithm

3 Experimental results

4 Conclusion

22 / 24



Background and Motivation The Proposed Model and Algorithm Experimental results Conclusion

Conclusion

1 We propose the group-tube transform induced collaborative
sparsity and low-rankness (GTCSLR) for HSIs mixed noise
removal model, which is capable of simultaneously
characterizing low-rankness and sparsity of the transformed
tensor.

2 We develop an efficient PAM algorithm to solve the proposed
non-convex model. Numerical experiments demonstrated the
superiority of the proposed method compared with the
state-of-the-art HSIs denoising methods.
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Thanks for your attention!
About me:

 Homepage: https://benzhengli.github.io/

 E-mail: lbz1604179601@gmail.com
 Wechat: lbz18270098670
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