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Background

Tensor regression models relationships between tensor-valued
covariates and responses.

Three typical forms:

(1) Scalar-on-Tensor: X € RP1**PD yc R
BeRP¥xPo . y=(X B)+e¢
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Background

Tensor regression models relationships between tensor-valued
covariates and responses.

Three typical forms:

(1) Scalar-on-Tensor: X € RP1**PD yc R
B e RP¥xPo y=(X B)+¢

(2) Tensor-on-Scalar: x € R9, ) € RP1>xpPD
y:zqzllegj—i-g, BJERPIX'"XPD

(3) Tensor-on-Tensor: X' € R XXk ) ¢ RPLXXPD
B € RI<-XakxXprx=xpp Y — (X B) + &

This work focuses on Scalar-on-Tensor regression with
functional covariates.



Why Functional Tensor Regression (FTR)?

» Traditional tensor regression treats all modes as discrete.

» In many applications, one mode is continuous (e.g., time,
spectrum).

> Need: A method that respects smooth variation along the
continuous mode.



Model Formulation

Functional Tensor Regression (FTR)
y= [ (X(0.5(0)de+ <
T

> X(t),B(t) € RP1**PD: time-indexed tensor covariate and
coefficient

» t & T denotes the functional mode (e.g., time, spectrum)

» B(t) is modeled as a smooth function:
B(t) =0 xq (1)

where © € RPOXP1XXPD ig 3 coefficient tensor and
¥ (t) € RPY is a spline basis vector.



From Continuous Model to Discrete Optimization

Observation: Only n time points ty, ..., t, are observed.

Discrete model:

y,-%<X;,@><ow(t,')>+8;, i=1,....n

> X; e RPLX"XPD: tensor covariate at t;
> (t;) € RPo: spline basis at t;
> © c RPOXPLXXPD- coefficient tensor

Penalized LS with low-rank constraint:

1 2
dnin o ; (vi — (X, © X0 9(t)))” + pP(O)

where P(0O) enforces smoothness along mode-0, and M, is the Tucker
rank-(rp, ..., rp) manifold.



Riemannian Optimization for FTR

Problem structure:
» O has fixed Tucker rank-(ro, ..., rp) constraint.
» Such tensors form a smooth manifold M,.

Why Riemannian optimization?

» Avoids explicit nuclear norm = no costly SVD truncation.

» Exploits manifold geometry for faster convergence.



Riemannian Optimization for Fixed-Tucker-Rank FTR

Functional Riemannian Gauss—Newton (FRGN)

Input: responses y;, tensors X}, basis ¢(t;), penalty P(0©),
Tucker rar/l\k r, max iters K
Output: ©

Initialize: ©° «— H,(Z*y) (T-HOSVD warm start)
for k=0,1,...,K—1 do

1) Euclidean gradient: gy < Vo f(OF)

2) Project to tangent space: &k < Pr_, m,(—8«)

3) Gauss—Newton step: solve subproblem on Tg« M, via

Riemannian CG / trust-region
4) Retraction: Ot « # (0K + &)

end for

\ J

Note: QR 5 W, BTV EfaiE; H, & T-HOSVD {2 retraction.



Theoretical Results of FRGN

» Error Bound: Under assumptions (1) and (2), the estimator
O satisfies
H(—) - G*HF < C- ¢<n7 Pd, rd)a
where Cis a constant and ¢(-) depends on sample size n,
tensor dimensions py, and ranks ry.

» Quadratic Convergence Rate: The Functional Riemannian
Gauss—Newton method achieves

[0t —e%|lF < Cqll0" — "I}

near the optimum, outperforming first-order methods
(linear convergence).



fMRI SCI6
Dataset
» Source: ADHD-200 FFEHIEE

» Samples: n=50 A

Tensor Covariates
> Resting-state fMRI time series X;(t) € R20*8x8x4

> 50 time frames (REEIEIFE 2 s)
» Spatial down-sampling to 8 x 8 x 4 blocks

> 5 NESMAEE: FiE. A KEHEH (mean FD) F, m; RR

Model Configuration
» Functional Tensor Regression (FTR):

yi=ml v+ /(X,-(t), B(t)) dt +¢;

» Time smoothness: BA=IRMERERE N K=5

» Low Tucker rank: (ri,ra, r3, 1) = (2,2,2,2)



Experiments

Coronal Plane Axial Plane Sagittal Plane
Figure 3: Functional tensor regression applied to the ADHD data. Plotted are slices from
three spatial dimensions where only coefficients with a magnitude larger than their 80%

quantile are displayed. A brighter color means a larger value.



Experiments
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Figure 4: Estimated effects of different regions of the brain on ADHD along time.

Code: github.com/kellty/ftreg.


https://github.com/kellty/ftreg
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