Functional Tensor Regression

Tongyu Li, Fang Yao, Anru R. Zhang

arXiv:2506.09358, 2025

Background

Tensor regression models relationships between tensor-valued covariates and responses.

Three typical forms:

(1) Scalar-on-Tensor: $\mathcal{X} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$, $y \in \mathbb{R}$ $\mathcal{B} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$, $y = \langle \mathcal{X}, \mathcal{B} \rangle + \varepsilon$

Background

Tensor regression models relationships between tensor-valued covariates and responses.

Three typical forms:

- (1) Scalar-on-Tensor: $\mathcal{X} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$, $y \in \mathbb{R}$ $\mathcal{B} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$, $y = \langle \mathcal{X}, \mathcal{B} \rangle + \varepsilon$
- (2) **Tensor-on-Scalar:** $x \in \mathbb{R}^q$, $\mathcal{Y} \in \mathbb{R}^{p_1 \times \dots \times p_D}$ $\mathcal{Y} = \sum_{j=1}^q x_j \mathcal{B}_j + \mathcal{E}$, $\mathcal{B}_j \in \mathbb{R}^{p_1 \times \dots \times p_D}$

Background

Tensor regression models relationships between tensor-valued covariates and responses.

Three typical forms:

- (1) Scalar-on-Tensor: $\mathcal{X} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$, $y \in \mathbb{R}$ $\mathcal{B} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$, $y = \langle \mathcal{X}, \mathcal{B} \rangle + \varepsilon$
- (2) **Tensor-on-Scalar:** $x \in \mathbb{R}^q$, $\mathcal{Y} \in \mathbb{R}^{p_1 \times \dots \times p_D}$ $\mathcal{Y} = \sum_{j=1}^q x_j \mathcal{B}_j + \mathcal{E}$, $\mathcal{B}_j \in \mathbb{R}^{p_1 \times \dots \times p_D}$
- (3) **Tensor-on-Tensor:** $\mathcal{X} \in \mathbb{R}^{q_1 \times \dots \times q_K}$, $\mathcal{Y} \in \mathbb{R}^{p_1 \times \dots \times p_D}$ $\mathcal{B} \in \mathbb{R}^{q_1 \times \dots \times q_K \times p_1 \times \dots \times p_D}$, $\mathcal{Y} = \langle \mathcal{X}, \mathcal{B} \rangle + \mathcal{E}$

This work focuses on **Scalar-on-Tensor regression** with functional covariates.

Why Functional Tensor Regression (FTR)?

- Traditional tensor regression treats all modes as discrete.
- In many applications, one mode is **continuous** (e.g., time, spectrum).
- Need: A method that respects smooth variation along the continuous mode.

Model Formulation

Functional Tensor Regression (FTR)

$$y = \int_{\mathcal{T}} \langle \mathcal{X}(t), \mathcal{B}(t) \rangle dt + \varepsilon$$

- $\mathcal{X}(t), \mathcal{B}(t) \in \mathbb{R}^{p_1 \times \cdots \times p_D}$: time-indexed tensor covariate and coefficient
- $ightharpoonup t \in T$ denotes the functional mode (e.g., time, spectrum)
- $ightharpoonup \mathcal{B}(t)$ is modeled as a smooth function:

$$\mathcal{B}(t) = \Theta \times_0 \psi(t)$$

where $\Theta \in \mathbb{R}^{p_0 \times p_1 \times \cdots \times p_D}$ is a coefficient tensor and $\psi(t) \in \mathbb{R}^{p_0}$ is a spline basis vector.

From Continuous Model to Discrete Optimization

Observation: Only *n* time points t_1, \ldots, t_n are observed.

Discrete model:

$$y_i \approx \langle \mathcal{X}_i, \Theta \times_0 \psi(t_i) \rangle + \varepsilon_i, \quad i = 1, \ldots, n$$

- $\triangleright \mathcal{X}_i \in \mathbb{R}^{p_1 \times \cdots \times p_D}$: tensor covariate at t_i
- $\psi(t_i) \in \mathbb{R}^{p_0}$: spline basis at t_i
- $\Theta \in \mathbb{R}^{p_0 \times p_1 \times \cdots \times p_D}$: coefficient tensor

Penalized LS with low-rank constraint:

$$\min_{\Theta \in \mathcal{M}_{r}} \frac{1}{2n} \sum_{i=1}^{n} (y_{i} - \langle \mathcal{X}_{i}, \Theta \times_{0} \psi(t_{i}) \rangle)^{2} + \rho \mathcal{P}(\Theta)$$

where $\mathcal{P}(\Theta)$ enforces smoothness along mode-0, and \mathcal{M}_r is the Tucker rank- (r_0, \ldots, r_D) manifold.

Riemannian Optimization for FTR

Problem structure:

- $ightharpoonup \Theta$ has fixed Tucker rank- (r_0, \ldots, r_D) constraint.
- ▶ Such tensors form a **smooth manifold** \mathcal{M}_r .

Why Riemannian optimization?

- ▶ Avoids explicit nuclear norm ⇒ no costly SVD truncation.
- Exploits manifold geometry for faster convergence.

Riemannian Optimization for Fixed-Tucker-Rank FTR

Functional Riemannian Gauss-Newton (FRGN)

Input: responses y_i , tensors \mathcal{X}_i , basis $\psi(t_i)$, penalty $\mathcal{P}(\Theta)$,

Tucker rank \mathbf{r} , max iters K

Output: $\widehat{\Theta}$

Initialize: $\Theta^0 \leftarrow \mathcal{H}_{\mathbf{r}}(Z^*y)$ (*T-HOSVD warm start*)

for k = 0, 1, ..., K - 1 do

- 1) Euclidean gradient: $g_k \leftarrow \nabla_{\Theta} f(\Theta^k)$
- 2) Project to tangent space: $\xi_k \leftarrow P_{T_{\Theta^k} \mathcal{M}_r}(-g_k)$
- 3) Gauss–Newton step: solve subproblem on $T_{\Theta^k}\mathcal{M}_{\mathbf{r}}$ via Riemannian CG / trust-region
- 4) Retraction: $\Theta^{k+1} \leftarrow \mathcal{H}_{\mathbf{r}}(\Theta^k + \xi_k)$

end for

Note: QR 与 W_d 用于切空间构造; \mathcal{H}_r 是 T-HOSVD 作为 retraction.

Theoretical Results of FRGN

Error Bound: Under assumptions (1) and (2), the estimator $\widehat{\Theta}$ satisfies

$$\|\widehat{\Theta} - \Theta^*\|_F \le C \cdot \phi(n, p_d, r_d),$$

where C is a constant and $\phi(\cdot)$ depends on sample size n, tensor dimensions p_d , and ranks r_d .

Quadratic Convergence Rate: The Functional Riemannian Gauss–Newton method achieves

$$\|\Theta^{k+1} - \Theta^*\|_F \le C_q \|\Theta^k - \Theta^*\|_F^2$$

near the optimum, **outperforming first-order methods** (linear convergence).

fMRI 实验

Dataset

► Source: ADHD-200 开源数据集

Samples: n = 50 人

Tensor Covariates

▶ Resting-state fMRI time series $X_i(t) \in \mathbb{R}^{50 \times 8 \times 8 \times 4}$

▶ 50 time frames (采集间隔 2 s)

▶ Spatial down-sampling to $8 \times 8 \times 4$ blocks

▶ 5 个额外协变量: 年龄、性别、头动参数(mean FD)等, m; 表示

Model Configuration

► Functional Tensor Regression (FTR):

$$y_i = m_i^{\top} \gamma + \int \langle X_i(t), \mathcal{B}(t) \rangle dt + \varepsilon_i$$

- ► Time smoothness: 自然三次样条基函数个数 K = 5
- Low Tucker rank: $(r_1, r_2, r_3, r_4) = (2, 2, 2, 2)$



Experiments

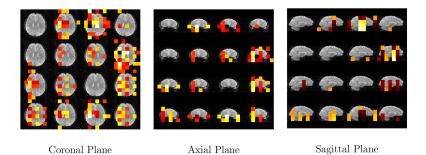


Figure 3: Functional tensor regression applied to the ADHD data. Plotted are slices from three spatial dimensions where only coefficients with a magnitude larger than their 80% quantile are displayed. A brighter color means a larger value.

Experiments

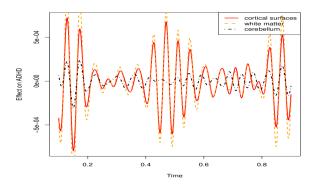


Figure 4: Estimated effects of different regions of the brain on ADHD along time.

Code: github.com/kellty/ftreg.