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Background

Tensor regression models relationships between tensor-valued
covariates and responses.
Three typical forms:
(1) Scalar-on-Tensor: X ∈ Rp1×···×pD , y ∈ R
B ∈ Rp1×···×pD , y = ⟨X ,B⟩+ ε

(2) Tensor-on-Scalar: x ∈ Rq, Y ∈ Rp1×···×pD

Y =
∑q

j=1 xjBj + E , Bj ∈ Rp1×···×pD

(3) Tensor-on-Tensor: X ∈ Rq1×···×qK , Y ∈ Rp1×···×pD

B ∈ Rq1×···×qK×p1×···×pD , Y = ⟨X ,B⟩+ E

This work focuses on Scalar-on-Tensor regression with
functional covariates.
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Why Functional Tensor Regression (FTR)?

▶ Traditional tensor regression treats all modes as discrete.
▶ In many applications, one mode is continuous (e.g., time,

spectrum).
▶ Need: A method that respects smooth variation along the

continuous mode.



Model Formulation

Functional Tensor Regression (FTR)

y =

∫
T
⟨X (t),B(t)⟩dt + ε

▶ X (t),B(t) ∈ Rp1×···×pD : time-indexed tensor covariate and
coefficient

▶ t ∈ T denotes the functional mode (e.g., time, spectrum)
▶ B(t) is modeled as a smooth function:

B(t) = Θ×0 ψ(t)

where Θ ∈ Rp0×p1×···×pD is a coefficient tensor and
ψ(t) ∈ Rp0 is a spline basis vector.



From Continuous Model to Discrete Optimization
Observation: Only n time points t1, . . . , tn are observed.
Discrete model:

yi ≈ ⟨Xi, Θ×0 ψ(ti)⟩+ εi, i = 1, . . . , n

▶ Xi ∈ Rp1×···×pD : tensor covariate at ti
▶ ψ(ti) ∈ Rp0 : spline basis at ti
▶ Θ ∈ Rp0×p1×···×pD : coefficient tensor

Penalized LS with low-rank constraint:

min
Θ∈Mr

1

2n

n∑
i=1

(yi − ⟨Xi,Θ×0 ψ(ti)⟩)2 + ρP(Θ)

where P(Θ) enforces smoothness along mode-0, and Mr is the Tucker
rank-(r0, . . . , rD) manifold.



Riemannian Optimization for FTR

Problem structure:
▶ Θ has fixed Tucker rank-(r0, . . . , rD) constraint.
▶ Such tensors form a smooth manifold Mr.

Why Riemannian optimization?
▶ Avoids explicit nuclear norm ⇒ no costly SVD truncation.
▶ Exploits manifold geometry for faster convergence.



Riemannian Optimization for Fixed-Tucker-Rank FTR

Functional Riemannian Gauss–Newton (FRGN)

Input: responses yi, tensors Xi, basis ψ(ti), penalty P(Θ),
Tucker rank r, max iters K
Output: Θ̂

Initialize: Θ0 ← Hr(Z∗y) (T-HOSVD warm start)
for k = 0, 1, . . . ,K− 1 do

1) Euclidean gradient: gk ← ∇Θf(Θk)
2) Project to tangent space: ξk ← PT

ΘkMr(−gk)
3) Gauss–Newton step: solve subproblem on TΘkMr via

Riemannian CG / trust-region
4) Retraction: Θk+1 ← Hr(Θ

k + ξk)

end for

Note: QR 与 Wd 用于切空间构造；Hr 是 T-HOSVD 作为 retraction.



Theoretical Results of FRGN

▶ Error Bound: Under assumptions (1) and (2), the estimator
Θ̂ satisfies

∥Θ̂−Θ∗∥F ≤ C · ϕ(n, pd, rd),

where C is a constant and ϕ(·) depends on sample size n,
tensor dimensions pd, and ranks rd.

▶ Quadratic Convergence Rate: The Functional Riemannian
Gauss–Newton method achieves

∥Θk+1 −Θ∗∥F ≤ Cq∥Θk −Θ∗∥2F

near the optimum, outperforming first-order methods
(linear convergence).



fMRI 实验
Dataset
▶ Source: ADHD-200 开源数据集
▶ Samples: n = 50 人

Tensor Covariates
▶ Resting-state fMRI time series Xi(t) ∈ R50×8×8×4

▶ 50 time frames (采集间隔 2 s)
▶ Spatial down-sampling to 8× 8× 4 blocks

▶ 5 个额外协变量: 年龄、性别、头动参数（mean FD）等，mi 表示

Model Configuration
▶ Functional Tensor Regression (FTR):

yi = m⊤
i γ +

∫
⟨Xi(t), B(t)⟩ dt + εi

▶ Time smoothness: 自然三次样条基函数个数 K = 5

▶ Low Tucker rank: (r1, r2, r3, r4) = (2, 2, 2, 2)



Experiments



Experiments

Code: github.com/kellty/ftreg.

https://github.com/kellty/ftreg
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