Sparse High-Dimensional Regression: Exact Scalable Algorithms and Phase Transitions

Ben-Zheng Li

December 5, 2025

Reference

▶ Dimitris Bertsimas, Bart Van Parys, *Sparse High-Dimensional Regression: Exact Scalable Algorithms and Phase Transitions, The Annals of Statistics*, Vol. 48, No. 1, 2020.

Background

Problem (Best Subset Selection).

Given input data $X=(x_1,\ldots,x_n)^{\top}\in\mathbb{R}^{n\times p}$ and response $Y=(y_1,\ldots,y_n)^{\top}\in\mathbb{R}^n$, we seek a k-sparse linear predictor:

$$\min_{w \in \mathbb{R}^p} \ \frac{1}{2\gamma} \|w\|_2^2 + \frac{1}{2} \|Y - Xw\|_2^2 \quad \text{s.t.} \quad \|w\|_0 \le k.$$

Why sparsity?

- In high dimensions $(p \gg n)$, restricting to few variables improves interpretability and guards against overfitting. [3]
- Many scientific domains require explicit variable selection (e.g., genetics, networks, text), so the goal is not just prediction but identifying a small set of truly relevant features.

Challenges

Computational barrier.

▶ Best subset selection solves the *right* ℓ_0 problem, but is NP-hard and traditionally scales poorly. [4, 1]

Convex surrogates are scalable but imperfect.

 $label{eq:lambda}$ relaxation (Lasso) is efficient, yet may yield biased estimates and unstable supports. [3, 5]

Gap. Can we obtain exact sparse regression at scale?

This paper: a new optimization view + scalable algorithm for high-dimensional best subset selection.

Main Idea & Contributions

Main idea.

Reformulate best subset selection into a convex integer optimization problem in binary variables, and solve it via a tailored cutting-plane / outer-approximation algorithm.

Contributions.

- lacktriangle New reformulation eliminates big-M constants and yields a pure binary convex program.
- Scalable algorithm with fast updates and warm starts, enabling problems with n, p up to 10^5 .
- ► Empirical insights: reveals a statistical & computational phase transition where exact subset selection becomes easy beyond a sample-size threshold.

Talk roadmap.

Reformulation \rightarrow Algorithm \rightarrow Phase transition theory \rightarrow Experiments.

Reformulation I: From ℓ_0 to Binary Selection

Start from the ℓ_0 problem.

We want at most k nonzero coefficients in w:

$$\min_{w \in \mathbb{R}^p} \ \frac{1}{2\gamma} \|w\|_2^2 + \frac{1}{2} \|Y - Xw\|_2^2 \quad \text{s.t.} \quad \|w\|_0 \le k. \tag{1}$$

Introduce binary selectors.

Let $s \in \{0,1\}^p$ indicate which variables are used:

$$S_k^p := \Big\{s \in \{0,1\}^p: \ \mathbf{1}^\top s \leq k\Big\}.$$

Then subset selection becomes: choose $s \in S_k^p$ and fit w only on active features.

For each column $X_{:i} \in \mathbb{R}^n$, define a rank–1 Gram matrix

$$K_j := X_{:j} X_{:j}^{\top} \in \mathbb{R}^{n \times n}.$$

For each column $X_{:j} \in \mathbb{R}^n$, define a rank–1 Gram matrix

$$K_j := X_{:j} X_{:j}^{\top} \in \mathbb{R}^{n \times n}.$$

Given $s \in S_k^p$, the selected design matrix is

$$X_s = [X_{:j_1}, \dots, X_{:j_k}] \quad \text{where } s_{j_t} = 1.$$

For each column $X_{:i} \in \mathbb{R}^n$, define a rank–1 Gram matrix

$$K_j := X_{:j} X_{:j}^{\top} \in \mathbb{R}^{n \times n}.$$

Given $s \in S_k^p$, the selected design matrix is

$$X_s = [X_{:j_1}, \dots, X_{:j_k}]$$
 where $s_{j_t} = 1$.

Gram expansion = sum of column outer products.

$$X_s X_s^{\top} = \sum_{t=1}^k X_{:j_t} X_{:j_t}^{\top} = \sum_{j=1}^p s_j X_{:j} X_{:j}^{\top}.$$

For each column $X_{:i} \in \mathbb{R}^n$, define a rank-1 Gram matrix

$$K_j := X_{:j} X_{:j}^{\top} \in \mathbb{R}^{n \times n}.$$

Given $s \in S_{k}^{p}$, the selected design matrix is

$$X_s = [X_{:j_1}, \dots, X_{:j_k}]$$
 where $s_{j_t} = 1$.

Gram expansion = sum of column outer products.

$$X_s X_s^{\top} = \sum_{t=1}^k X_{:j_t} X_{:j_t}^{\top} = \sum_{j=1}^p s_j X_{:j} X_{:j}^{\top}.$$

Define

$$K_s := \sum_{i=1}^p s_j K_j \quad \Rightarrow \quad \boxed{K_s = X_s X_s^{\top}}.$$

Intuition: the subset Gram matrix is the sum of Gram contributions from each selected feature.

Reformulation II-b(1): Eliminating w

Inner ridge fit for a fixed subset.

For $s \in S_k^p$, solve ridge regression on X_s :

$$w_s^* = \arg\min_{w_s} \frac{1}{2} \|Y - X_s w_s\|_2^2 + \frac{1}{2\gamma} \|w_s\|_2^2.$$
 (7)

Closed-form ridge solution. First-order optimality gives

$$(X_s^\top X_s + \gamma^{-1}I)w_s = X_s^\top Y \quad \Rightarrow \quad w_s^\star = (X_s^\top X_s + \gamma^{-1}I)^{-1}X_s^\top Y.$$

Plug back to remove w_s .

$$c(s) = \frac{1}{2} Y^{\top} \Big(I_n - X_s (X_s^{\top} X_s + \gamma^{-1} I)^{-1} X_s^{\top} \Big) Y.$$

Reformulation II-b(2): Kernel view via Woodbury

Let $K_s = X_s X_s^{\top}$.

Matrix Inversion Lemma (Woodbury).

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}.$$

Set $A = I_n, \ U = X_s, \ C = \gamma I, \ V = X_s^{\top}$. Then

$$(I_n + \gamma X_s X_s^{\top})^{-1} = I_n - X_s (X_s^{\top} X_s + \gamma^{-1} I)^{-1} X_s^{\top}.$$

Therefore the optimal value is

$$c(s) = \frac{1}{2} Y^{\top} (I_n + \gamma K_s)^{-1} Y$$
(10)

Resulting pure binary optimization.

$$\min_{s \in S_{r}^{p}} c(s) \quad \text{with } c(s) \text{ convex in } s. \tag{CIO}$$

So best subset selection becomes a convex integer optimization problem with no big-M constants.

Algorithm Intuition

We have a convex-integer problem.

After reformulation:

$$\min_{s \in S_k^p} c(s), \qquad s \in \{0, 1\}^p,$$

where $c(s) = \frac{1}{2} Y^{\top} (I_n + \gamma K_s)^{-1} Y$ is convex and smooth in s.

Key idea.

Convexity implies a global linear lower bound at any point $s^{(t)}$:

$$c(s) \geq c(s^{(t)}) + \nabla c(s^{(t)})^{\top} (s - s^{(t)}).$$

Each bound is a cutting plane.

Outer approximation.

Collect many cuts to form a tight lower envelope, then search over binary s using a master MIO that gets tighter each iteration $\[2\]$.

Takeaway: exploit convex geometry to guide combinatorial search.

Algorithm Overview

Algorithm: Cutting-Plane / Outer Approximation for Best Subset Selection

Input: Data (X,Y), sparsity level k, ridge parameter γ , tolerance ε .

Output: Globally optimal subset s^* (and coefficients w^*).

- 1. Initialize. Obtain an initial subset $s^{(0)}$ (e.g., greedy warm start), set cut set $\mathcal{C} \leftarrow \emptyset$.
- 2. Evaluate objective and gradient. For current $s^{(t)}$, compute

$$c(s^{(t)}) = \frac{1}{2} Y^{\top} (I_n + \gamma K_{s(t)})^{-1} Y, \quad \nabla c(s^{(t)}).$$

3. Add a cutting plane. Introduce η as a lower bound on the optimal value. Each tangent cut is a global lower bound on c(s)::

$$\eta \geq c(s^{(t)}) + \nabla c(s^{(t)})^{\top} (s - s^{(t)}).$$

4. Solve the master MIO. Minimize the best lower bound implied by all cuts.

$$\min_{s \in S_h^p, \ \eta} \ \eta$$
 s.t. all cuts in \mathcal{C} .

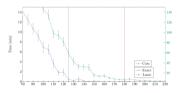
Let the solution be $(s^{(t+1)}, \eta^{(t+1)})$.

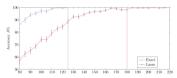
5. Check convergence. If $\eta^{(t+1)} \geq c(s^{(t+1)}) - \varepsilon$, stop and output $s^{\star} = s^{(t+1)}$.

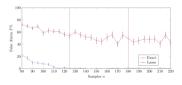
Empirical Teaser: Phase Transition

What happens as sample size n increases?

Exact best subset selection exhibits a sharp phase transition: from poor recovery to near-perfect recovery, and (surprisingly) from hard to easy computation.







Theory Setup for Phase Transition

Data model.

Assume a sparse linear model with true support S^* :

$$Y = Xw^* + \varepsilon, \qquad |S^*| = k, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2 I_n).$$

Two regimes.

- ▶ Undersampled regime $(n < n_t)$: many subsets fit similarly well \Rightarrow hard recovery and heavy computation.
- Oversampled regime $(n > n_t)$: true subset separates clearly \Rightarrow accurate recovery and easy computation.

Goal of theory.

Characterize the threshold n_t and show exact subset selection succeeds *earlier* than ℓ_1 surrogates.

Main Theoretical Results

Theorem. Statistical phase transition

Assume the design is uncorrelated ($\rho=0$), set the ridge parameter $\gamma=1/n$, and suppose p-k>k. Then there exist numerical constants $c_8,c_9>0$ (independent of n,k,p,σ^2) such that for all $\theta\geq 1$,

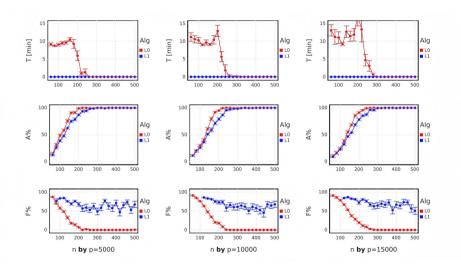
$$n \geq \theta n_1 \implies \mathbb{P}[s^* = s_1^* = s^{\text{true}}] \geq 1 - c_9 \exp(-\theta c_8).$$

Corollary. Earlier success than Lasso

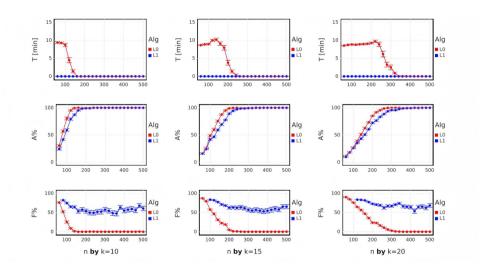
Exact ℓ_0 subset selection achieves full support recovery once n exceeds its threshold (around n_0 / n_t), and this occurs *strictly earlier* than the Lasso accuracy threshold n_1 :

$$n_t^{(\ell_0)} < n_1^{(\ell_1)}.$$

Phase Transition vs. Dimension p



Phase Transition vs. Sparsity k



References

- [1] Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a modern optimization lens. *The Annals of Statistics*, 44(2):813–852, 2016.
- [2] Marco A. Duran and Ignacio E. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. *Mathematical Programming*, 36(3):307–339, 1986.
- [3] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press, 2015.
- [4] B. K. Natarajan. Sparse approximate solutions to linear systems. *SIAM Journal on Computing*, 24(2):227–234, 1995.
- [5] Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B*, 58(1):267–288, 1996.