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Third-Order Tensor Data

Many real-world data are third-order tensors:

color images

videos

multispectral/hyperspectral images

traffic/internet data

· · ·
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Missing Values

Multi-dimensional data usually undergo missing entries or

undersample problem due to sensor malfunction or poor atmo-

spheric conditions, which hinders its subsequent applications.
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Tensor completion

Tensor completion refers to the process of inferring miss-

ing values from partially observed tensor data.
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Low-rankness

Fortunately, real-world data are not unstructured. In the

matrix case, the rank is a powerful tool to capture global infor-

mation.
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For observed matrix O ∈ Rn1×n2 , the low-rank matrix com-

pletion is mathematically formulated as follows:

min
X

rank(X)

s.t. XΩ = OΩ,
(1)

where X is the required matrix and Ω is the index set of the

observed elements.

For observed tensor O ∈ Rn1×n2×n3 , the low-rank tensor

completion (LRTC) is mathematically formulated as follows:

min
X

rank(X )

s.t. XΩ = OΩ.
(2)
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The Rank of Tensors

However, the definition of the rank of tensors is the fun-

damental problem, which is still an open problem:

CP rank

Tucker rank

tubal rank or multi rank

tensor train rank

tensor ring rank

· · ·
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Tensor singular values decomposition (t-SVD)

The tensor-tensor-product (t-prod) C = A∗B ofA ∈ Rn1×n2×n3

and B ∈ Rn2×n4×n3 is a tensor of size n1 × n4 × n3, where the

(i , j)-th tube cij: is given by

cij: = C(i , j , :) =

n2∑
k=1

A(i , k , :) ∗ B(k , j , :)

where ∗ denotes the circular convolution between two tubes of

same size.

M. E. Kilmer and C. D. Martin, Factorization Strategies for Third-order Tensors, Linear
Algebra and its Applications, 2011
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Tensor Singular Value Decomposition (t-SVD)

Based on the tensor-tensor product, the tensor singular

value decomposition has been emerged as a powerful tool for

multi-dimensional image processing:

X = U ∗ S ∗ VH ,

where U and V are orthogonal tensors, S is the f-diagonal ten-

sor, and VH denotes the conjugate transpose of V.
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Based on t-SVD, the tubal rank of X is defined as the num-

ber of non-zero tubes of S.

M. E. Kilmer and C. D. Martin, Factorization Strategies for Third-order Tensors, Linear Algebra
and its Applications, 2011
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Tensor Nuclear Norm (TNN)

Based on tubal rank, the tensor nuclear norm (TNN)

was suggested as the convex surrogate to capture the intrinsic

structure of the underlying tensor. For X ∈ Rn1×n2×n3 , TNN is

defined as

‖X‖TNN :=
r∑

i=1

S(i , i ,1),

where S(i , i ,1), i = 1, · · · , r are singular values of X .

Z. M. Zhang, et al., Novel Methods for Multilinear Data Completion and De-noising Based

on Tensor-SVD, CVPR, 2014

C. Y. Lu, et al., Tensor Robust Principal Component Analysis with A New Tensor Nuclear

Norm, IEEE TPAMI, 2020
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TNN-based LRTC

Therefore, the TNN-based LRTC problem can be rewritten

as follows:
min
X
‖X‖TNN

s.t. XΩ = OΩ

(3)
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The Revisit of Tensor-Tensor Product

For A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , the tensor-tensor

product is equivalent to

C(:, :, k) = A(:, :, k)B(:, :, k), k = 1, · · · ,n3,

where C = C×3 F, A = A×3 F, B = B×3 F. Here F is the discrete

Fourier transform matrix and ×3 is the mode-3 product.

Z. M. Zhang, et al., Novel Methods for Multilinear Data Completion and De-noising Based

on Tensor-SVD, CVPR, 2014

C. Y. Lu, et al., Tensor Robust Principal Component Analysis with A New Tensor Nuclear

Norm, IEEE TPAMI, 2020

Ben-Zheng Li (UESTC)



Introduction
t-SVD and TNN

The evolution of transform-based TNN

The Revisit of Tensor Nuclear Norm

For X ∈ Rn1×n2×n3 , tensor nuclear norm is equivalent to

‖X‖TNN =

n3∑
k=1

‖Z(:, :, k)‖∗,

where Z = X×3F and X = Z×3FH . Under the multi-linear alge-

bra framework, the vital important building block is the transform,

which captures the relationship between slices.

Z. M. Zhang, et al., Novel Methods for Multilinear Data Completion and De-noising Based

on Tensor-SVD, CVPR, 2014

C. Y. Lu, et al., Tensor Robust Principal Component Analysis with A New Tensor Nuclear

Norm, IEEE TPAMI, 2020
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The TNN-based LRTC

Therefore, the TNN-based LRTC problem can be mathe-

matically formulated as follows:

min
Z

n3∑
i=1

‖Z(:, :, i)‖∗

s.t. (Z ×3 F−1
n3

)Ω = OΩ,

(4)

where F−1
n3

is the inverse DFT matrix, which is pre-defined and

unitary.
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The slice view and fiber view
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Data The original tensors The transformed tensors
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Observed data
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transform
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transform

Low-rank prior

Sparse prior

PSNR: 10.866 dB

SSIM：0.2925

PSNR: 32.091 dB

SSIM : 0.9423 

PSNR: 34.164 dB

SSIM : 0.9578

PSNR: 28.003 dB

SSIM : 0.8189

(a)

Recovered results

(b)

} CSLRT
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We suggest the collaborative sparse and low-rank trans-

forms (CSLRT) as follows:

min
X ,Z,S,D,Q

d∑
k=1

‖Z(:, :, k)‖∗ + λ‖S‖1

s.t. XΩ = OΩ,X = Z ×3 D,X = S ×3 Q,

‖D(:, k)‖2 = 1 for k = 1, ...,d ,

‖Q(:, k)‖2 = 1 for k = 1, ...,q,

(5)

where ‖S‖1 =
∑

ijk |sijk | =
∑

i,j ‖S(i , j , :)‖1 is the sum of `1-

norms of all third mode fibers under the transform Q. D ∈ Rn3×d

and Q ∈ Rn3×q are the low-rank transform and the sparse trans-

form, and Z ∈ Rn1×n2×d and S ∈ Rn1×n2×q are tensors under

transforms D and Q, respectively.
Ben-Zheng Li (UESTC)
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Unconstrained Optimization Problem

By defining

Φ(X ) =

0, XΩ = OΩ,

∞, otherwise,

and

Ψ(D) =

0, ‖D(:, k)‖2 = 1 for k = 1, ...,d ,

∞, otherwise,

the problem (5) can be rewritten as the following unconstraint

problem via half quadratic splitting technique:

Ben-Zheng Li (UESTC)
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PAM algorithm

min
X ,Z,S,D,Q

d∑
k=1

‖Z(:, :, k)‖∗ + λ‖S‖1 +
β1

2
‖X − Z ×3 D‖2F

+
β2

2
‖X − S ×3 Q‖2F + Ψ(D) + Ψ(Q) + Φ(X ).

(6)

We denote the objective function in (6) as L(Z,D,S,Q,X ). Un-

der the proximal alternating minimization (PAM) algorithm frame-

work, we can alternatively update each variable.

Ben-Zheng Li (UESTC)
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Update Z and D

Z(3) = unfold3(Z) and D can be rewritten as follows:

Z(3) = [z1, · · · , zk , · · · , zd ]>

= [vec(Z1), · · · ,vec(Zk ), · · · ,vec(Zd )]>

and

D = [d1, · · · ,dk , · · · ,dd ],

where zk = vec(Zk ) denotes the vectorization of Zk
1 and dk =

D(:, k) is the k -th column of D.

1For convenience, we denote Zk = Z(:, :, k) as the k-th frontal slice of Z.
Ben-Zheng Li (UESTC)
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Updating Z and D

Then, Z and D subproblems can be rewritten as follows:

min
Z

d∑
k=1

‖Zk‖∗ +
βt

1
2
‖Xt

(3) −
d∑

k=1

dkz>k ‖2F +
ρ1

2

d∑
k=1

‖Zk − Zt
k‖

2
F (7)

and

min
D

βt
1

2
‖Xt

(3) −
d∑

k=1

dkz>k ‖2F +
ρ2

2

d∑
k=1

‖dk − dt
k‖

2
F + Ψ(D). (8)
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Introduction
t-SVD and TNN

The evolution of transform-based TNN

Updating Z and D

The problem (7) and (8) can be solved by solving a se-

quence of Zk and dk subproblems, respectively. We define
Ẑt

k =
[
zt+1

1 , · · · , zt+1
k−1, z

t
k+1, · · · , z

t
d

]>
,

D̂t
k = [dt+1

1 , · · · ,dt+1
k−1,d

t
k+1, · · · ,d

t
d ],

Rt
k = Xt

(3) − D̂t
k Ẑt

k .

Then, the Zk and dk (k = 1, ...,d) are updated as follows:

min
Zk

βt
1

2
‖Rt

k − dt
kzk
>‖2F + ‖Zk‖∗ +

ρ1

2
‖Zk − Zt

k‖
2
F (9)

and

min
dk

βt
1

2
‖Rt

k − dkzt+1
k
>‖2F +

ρ2

2
‖dk − dt

k‖
2
F + Ψ(D). (10)
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Updating Z and D

After combining two quadratic terms in problem (9), we can

directly derive the closed-form solution of problem (9) via the

singular value thresholding (SVT) operator as follows:

Zt+1
k = T 1

βt
1+ρ1

(
βtvec−1(Rt

k
>dt

k ) + ρ1Zt
k

βt
1 + ρ1

).

Similarly, we can obtain the closed-form solution of (10) as fol-

lows:

dt+1
k =

βt
1Rt

kvec(Zt+1
k ) + ρ2dt

k

‖βt
1Rt

kvec(Zt+1
k ) + ρ2dt

k‖2
.

Ben-Zheng Li (UESTC)
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Updating S and Q

St+1
k = soft 1

βt
2+ρ3

(
βt

2vec
−1(Rt

k
>qt

k ) + ρ3St
k

βt
1 + ρ3

).

qt+1
k =

βt
2Rt

kvec(St+1
k ) + ρ4qt

k

‖βt
2Rt

kvec(St+1
k ) + ρ4qt

k‖2
.

Ben-Zheng Li (UESTC)
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Updating X

We update X by solving the following minimization problem:

X t+1 = argmin
X

βt
1

2
‖X − Z t+1 ×3 Dt+1‖2F +

βt
2

2
‖X − S t+1 ×3 Qt+1‖2F +

ρ5

2
‖X − X t‖2F + Φ(X ).

Therefore, X t+1 is updated via the following steps:
X t+ 1

2 =
βt

1Z
t+1 ×3 Dt+1 + βt

2S
t+1 ×3 Qt+1 + ρ5X t

ρ5 + βt
1 + βt

2
,

X t+1 =
(
X t+ 1

2
)

ΩC +OΩ,

(11)

where ΩC denotes the complementary set of Ω.
Ben-Zheng Li (UESTC)
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Theoretical guarantee

Under the PAM framework, we have the following theoretical

guarantee:

Theorem

The sequence {Z t ,Dt ,S t ,Qt ,X t}t∈N generated by PAM-based

Algorithm is bounded and converges to a critical point of L.

Ben-Zheng Li (UESTC)
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3DCSLRT

Moreover, for tensors with limited correlation along the third

mode (e.g., color images), we further suggest three-dimensional

CSLRT (3DCSLRT) as follows:

min
X ,Zi ,Si ,Di ,Qi

3∑
i=1

αi

(
‖bdiag(Zi)‖∗ + λi‖Si‖1

)
s.t. XΩ = OΩ,X = Zi ×i Di ,X = Si ×i Qi ,

‖Di(:, k)‖2 = 1 for k = 1, ...,di ,

‖Qi(:, k)‖2 = 1 for k = 1, ...,qi ,

(12)

Ben-Zheng Li (UESTC)
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Numerical experiments

Original Observed 14.9dB TNN 46.1dB DCT-TNN 47.6dB

TRLRF 43.8dB TTNN 48.9dB DTNN 48.3dB CSLRT 51.1dB
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Ben-Zheng Li, Xi-Le Zhao*, Jian-Li Wang, Yong Chen, Tai-Xiang Jiang,

and Jun Liu, Tensor Completion via Collaborative Sparse and Low-Rank Trans-

forms, IEEE Transactions on Computational Imaging (TCI), Accept with

mandatory minor revisions.
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Thank you very much for listening.

Wechat
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