

Conformal Mixed-Integer Constraint Learning with Feasibility Guarantees

Presenter: Ben-Zheng Li

December 21, 2025

Reference: Daniel Ovalle, Lorenz T. Biegler, Ignacio E. Grossmann, Carl D. Laird, and Mateo Dulce Rubio, *Conformal Mixed-Integer Constraint Learning with Feasibility Guarantees*, arXiv, 2025.

Background I

- ▶ In many real-world optimization problems, **decision variables are mixed continuous and discrete**, and constraints are unknown or hard to model explicitly.
- ▶ True constraint depends on an unknown function:

$$h(x) \leq 0, \quad h(\cdot) \text{ unknown}$$

- ▶ Instead, we observe data:

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n, \quad y_i \approx h(x_i)$$

- ▶ **Constraint Learning (CL)** [2, 1]:

$$h(x) \approx \hat{h}(x)$$

where $\hat{h}(\cdot)$ is learned from data and embedded into optimization.

Background II

- ▶ Suppose we solve the optimization problem using the learned constraint:

$$\min_{x,z} f(x, z) \quad \text{s.t.} \quad \hat{h}(x) \leq 0, \quad (x, z) \in \mathcal{X}$$

- ▶ The optimizer typically selects a solution near the **constraint boundary**:

$$\hat{h}(x^*) \approx 0$$

- ▶ However, the learned constraint is imperfect:

$$\hat{h}(x) = h(x) + \varepsilon(x)$$

- ▶ Even small errors near the boundary can cause infeasibility:

$$\hat{h}(x^*) \leq 0 \quad \not\Rightarrow \quad h(x^*) \leq 0$$

Literature Review

- ▶ **Mixed-Integer Constraint Learning (MICL) [7, 5]**
 - ▶ Learn surrogate constraint models from data
 - ▶ Embed learned constraints into mixed-integer optimization
 - ▶ **Limitation:**
 - ▶ High computational cost
 - ▶ No formal probabilistic feasibility guarantees

Literature Review

- ▶ **Mixed-Integer Constraint Learning (MICL) [7, 5]**
 - ▶ Learn surrogate constraint models from data
 - ▶ Embed learned constraints into mixed-integer optimization
 - ▶ **Limitation:**
 - ▶ High computational cost
 - ▶ No formal probabilistic feasibility guarantees
- ▶ **Trust-Region/Filter-based Optimization [3]**
 - ▶ Iteratively refine learned constraints via local sampling
 - ▶ Optimize only in regions where models are accurate
 - ▶ **Limitation:**
 - ▶ Strong assumptions on noise and smoothness
 - ▶ Requires access to true constraint evaluations

Literature Review

- ▶ **Mixed-Integer Constraint Learning (MICL) [7, 5]**
 - ▶ Learn surrogate constraint models from data
 - ▶ Embed learned constraints into mixed-integer optimization
 - ▶ **Limitation:**
 - ▶ High computational cost
 - ▶ No formal probabilistic feasibility guarantees
- ▶ **Trust-Region/Filter-based Optimization [3]**
 - ▶ Iteratively refine learned constraints via local sampling
 - ▶ Optimize only in regions where models are accurate
 - ▶ **Limitation:**
 - ▶ Strong assumptions on noise and smoothness
 - ▶ Requires access to true constraint evaluations
- ▶ **Conformal-Enhanced Optimization [4, 6]**
 - ▶ Use conformal prediction to quantify uncertainty
 - ▶ Embed uncertainty sets into optimization problems
 - ▶ **Limitation:**
 - ▶ Focus on parameters or stochastic constraints
 - ▶ Do not directly handle learned constraint functions

Desired Feasibility Guarantee

- ▶ Let x^* be the solution obtained using learned constraints.
- ▶ What truly matters is feasibility in the real system:

$$h(x^*) \leq 0$$

- ▶ This paper seeks a probabilistic guarantee:

$$\mathbb{P}(h(x^*) \leq 0) \geq 1 - \alpha$$

- ▶ The risk level $\alpha \in (0, 1)$ is user-specified.

Goal: Achieve finite-sample feasibility guarantees *without* specifying uncertainty sets or distributions.

► **C-MICL optimization problem:**

$$\begin{aligned} \min_{x,z} \quad & f(x, z) \\ \text{s.t.} \quad & g(x, z) \leq 0, \quad (x, z) \in \mathcal{X}, \\ & \mathcal{C}(x) \subseteq \mathcal{Y} \end{aligned}$$

Key idea: Replace point constraints with conformal prediction sets, and enforce feasibility against the worst case within the set.

Roadmap: Conformal prediction → Mixed-integer formulation → Finite-sample feasibility guarantee

Conformal Prediction: Constructing $C(x)$

- ▶ Goal: construct a prediction set $C(x)$ such that

$$\mathbb{P}(h(x) \in C(x)) \geq 1 - \alpha$$

without assuming a distribution for $h(x)$.

- ▶ Key idea: use a **calibration dataset** to quantify prediction uncertainty.
- ▶ Given a learned model $\hat{h}(x)$, define a nonconformity score:

$$s_i = |y_i - \hat{h}(x_i)|.$$

- ▶ Let $q_{1-\alpha}$ be the $(1 - \alpha)$ -quantile of $\{s_i\}$.

Interpretation: $q_{1-\alpha}$ quantifies how large the prediction error can be with probability at least $1 - \alpha$.

Conformal Prediction: Constructing $C(x)$

- ▶ By construction, the quantile $q_{1-\alpha}$ satisfies:

$$\mathbb{P}\left(\left|h(x) - \hat{h}(x)\right| \leq q_{1-\alpha}\right) \geq 1 - \alpha.$$

- ▶ This implies:

$$-q_{1-\alpha} \leq h(x) - \hat{h}(x) \leq q_{1-\alpha}.$$

- ▶ Rearranging terms yields:

$$h(x) \in [\hat{h}(x) - q_{1-\alpha}, \hat{h}(x) + q_{1-\alpha}].$$

Conformal prediction set:

$$C(x) = [\hat{h}(x) - q_{1-\alpha}, \hat{h}(x) + q_{1-\alpha}].$$

Remark. For regression constraints, $C(x)$ is an interval; for classification constraints, $C(x)$ is a label set $C(x) \subseteq \{0, 1\}$.

Embedding Prediction Sets into Optimization

- ▶ From conformal prediction, we obtain a prediction set $C(x)$ with coverage guarantee: $\mathbb{P}(h(x) \in C(x)) \geq 1 - \alpha$.
- ▶ To ensure safety, we enforce feasibility for *all* values in the prediction set:

$$\max_{y \in C(x)} y \leq 0.$$

- ▶ **Regression constraints.** For interval-valued sets

$$C(x) = [\hat{h}(x) - q, \hat{h}(x) + q],$$

the robust constraint reduces to:

$$\hat{h}(x) + q \leq 0.$$

Key observation: Conformal prediction transforms uncertain constraints into a tractable *shifted deterministic constraint*.

Remark. For classification constraints, feasibility is enforced by excluding infeasible labels from $C(x)$; the formulation is analogous.

Finite-Sample Feasibility Guarantee

Theorem. Finite-sample feasibility of C-MICL

Let \mathcal{F}_N denote the feasible region of the C-MICL problem, defined as

$$\mathcal{F}_N = \{(x, z) \in \mathcal{X} : g(x, z) \leq 0, C(x) \subseteq \mathcal{Y}\}.$$

Under the conditions of Lemma 3.1 and Assumption 4.1, for any feasible solution $(x', z') \in \mathcal{F}_N$, we have

$$\mathbb{P}(h(x') \in \mathcal{Y}) \geq 1 - \alpha.$$

- ▶ The probability is taken over the randomness of the calibration data.
- ▶ The guarantee holds for **any feasible solution**, not only the optimum.
- ▶ The result is distribution-free and holds in finite samples.

Regression vs. Classification C-MICL

	Regression C-MICL	Classification C-MICL
Constraint type	Continuous constraint $h(x) \in \mathbb{R}$	Categorical constraint (feasible / infeasible)
Prediction set	Interval-valued: $C(x) = \hat{h}(x) \pm q \hat{u}(x)$	Label-valued: $C(x) \subseteq \mathcal{Y}$
Uncertainty modeling	Explicit uncertainty model $\hat{u}(x)$	No separate uncertainty model
Conformal score	Absolute or scaled residuals	Scores computed from logits
Feasibility enforcement	$\hat{h}(x) + q\hat{u}(x) \leq 0$	Exclude infeasible labels from $C(x)$

Key takeaway. Regression and classification are two instantiations of the same C-MICL framework and enjoy identical finite-sample feasibility guarantees.

Experimental Setup

► Tasks

- Regression constrained optimization
- Classification constrained optimization
- Constraints are unknown and learned from data

► Baselines

- MICL
- W-MICL
- C-MICL

► Prediction models

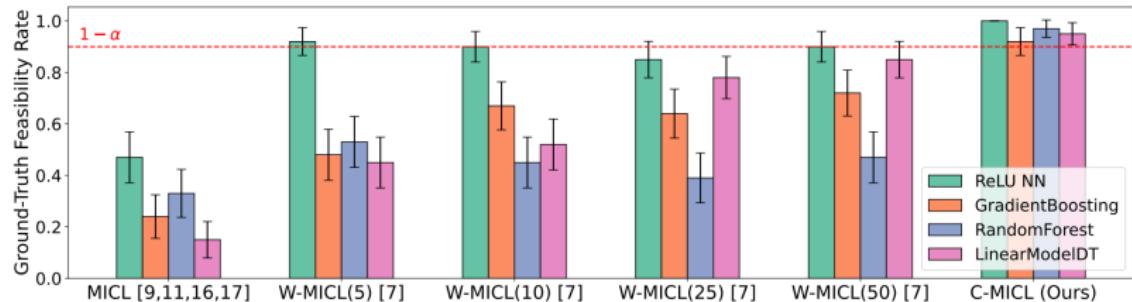
- Neural networks for $\hat{h}(x)$
- An explicit uncertainty model $\hat{u}(x)$ for regression

► Evaluation metrics

- Feasibility violation rate
- Objective value
- Solution optimality gap

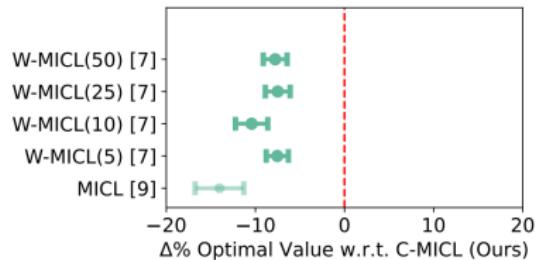
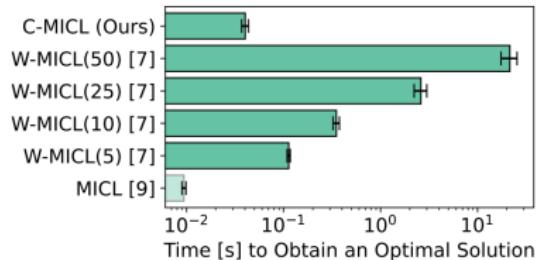
Goal. Evaluate whether C-MICL achieves finite-sample feasibility guarantees while maintaining competitive objective performance.

Main Results: Ground-Truth Feasibility



Key observation. C-MICL consistently achieves the target feasibility level $1 - \alpha$ across all base prediction models, while prior MICL variants exhibit substantial violations and high variability.

Objective Quality vs. Computational Efficiency



Key takeaway: C-MICL achieves a favorable trade-off between *feasibility guarantees, solution quality, and computational efficiency*.

References

- [1] Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. *Management Science*, 2020.
- [2] Priya Donti, Brandon Amos, and Zico Kolter. Task-based end-to-end model learning in stochastic optimization. In *Advances in Neural Information Processing Systems*, 2017.
- [3] Author et al. Trust region filter methods for optimization with learned constraints. *SIAM Journal on Optimization*, 2021.
- [4] Lin et al. Conformalized optimization. *NeurIPS*, 2022.
- [5] Tajmir-Riahi et al. Data-driven constraint learning for optimization. *Operations Research*, 2020.
- [6] Zhao et al. Conformal chance-constrained optimization. *ICML*, 2021.
- [7] Ruth Misener and Ben Bigler. Constraint learning in mixed-integer optimization. *Computers & Chemical Engineering*, 2021.