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Background |

» In many real-world optimization problems, decision variables
are mixed continuous and discrete, and constraints are
unknown or hard to model explicitly.

» True constraint depends on an unknown function:
h(z) <0, h(-) unknown
» |nstead, we observe data:
D = {(@i, i) iz yi = h(zi)
» Constraint Learning (CL) [2, 1]:
h(x) ~ h(x)

where ﬁ() is learned from data and embedded into
optimization.



Background Il
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Suppose we solve the optimization problem using the learned
constraint:

min f(z,2) st. h(z) <0, (z,2) € X

)

The optimizer typically selects a solution near the constraint
boundary:
h(z*) ~ 0

However, the learned constraint is imperfect:

)

(x) = h(x) +e(x)

Even small errors near the boundary can cause infeasibility:

o~

h(z¥) <0 # h(z*) <0



Literature Review
» Mixed-Integer Constraint Learning (MICL) [7, 5]

» Learn surrogate constraint models from data
» Embed learned constraints into mixed-integer optimization
» Limitation:

» High computational cost

> No formal probabilistic feasibility guarantees



Literature Review
» Mixed-Integer Constraint Learning (MICL) [7, 5]

» Learn surrogate constraint models from data
» Embed learned constraints into mixed-integer optimization
» Limitation:

» High computational cost

> No formal probabilistic feasibility guarantees

» Trust-Region/Filter-based Optimization [3]
P |teratively refine learned constraints via local sampling
» Optimize only in regions where models are accurate
> Limitation:
» Strong assumptions on noise and smoothness
P> Requires access to true constraint evaluations



Literature Review
» Mixed-Integer Constraint Learning (MICL) [7, 5]

» Learn surrogate constraint models from data
» Embed learned constraints into mixed-integer optimization
» Limitation:

» High computational cost

> No formal probabilistic feasibility guarantees

» Trust-Region/Filter-based Optimization [3]
P |teratively refine learned constraints via local sampling
» Optimize only in regions where models are accurate
> Limitation:
» Strong assumptions on noise and smoothness
P> Requires access to true constraint evaluations

» Conformal-Enhanced Optimization [4, 6]

» Use conformal prediction to quantify uncertainty
» Embed uncertainty sets into optimization problems
» Limitation:

» Focus on parameters or stochastic constraints

» Do not directly handle learned constraint functions



Desired Feasibility Guarantee

> Let z* be the solution obtained using learned constraints.

» What truly matters is feasibility in the real system:
h(z*) <0
P> This paper seeks a probabilistic guarantee:
P(h(z*) <0) > 1 -«

» The risk level a € (0, 1) is user-specified.

Goal: Achieve finite-sample feasibility guarantees without specifying
uncertainty sets or distributions.




C-MICL

» C-MICL optimization problem:

min  f(z,2)
T,z

0, (z,2)€X,

Key idea: Replace point constraints with conformal prediction sets,
and enforce feasibility against the worst case within the set.

Roadmap: Conformal prediction — Mixed-integer formulation —
Finite-sample feasibility guarantee




Conformal Prediction: Constructing C'(z)

» Goal: construct a prediction set C(x) such that
P(h(z) € C(z)) > 1 -«

without assuming a distribution for h(z).

> Key idea: use a calibration dataset to quantify prediction
uncertainty.

» Given a learned model ﬁ(x) define a nonconformity score:
Si = ’yz _/ﬁ(xi)}'
» Let q1—o be the (1 — a)-quantile of {s;}.

Interpretation: q1—. quantifies how large the prediction error can be with
probability at least 1 — a.



Conformal Prediction: Constructing C'(x)
» By construction, the quantile ¢;_ satisfies:
]P’(Uz(a:) —71\(55)} < (J1—a) >1—a.
» This implies:
~q1-a < h(@) = h(z) < @10

» Rearranging terms yields:

o~

h(x) € [h(x) = q1-a, h(z) +q1-a).

Conformal prediction set:

C(z) = [h(@) = q1—a h(@) + q1—a]-

Remark. For regression constraints, C(x) is an interval; for classification
constraints, C(z) is a label set C(x) C {0, 1}.



Embedding Prediction Sets into Optimization

» From conformal prediction, we obtain a prediction set C(x)
with coverage guarantee: P(h(z) € C(z)) > 1 —a.

» To ensure safety, we enforce feasibility for all values in the
prediction set:

max y < 0.
yeC(z)

P> Regression constraints. For interval-valued sets

~

C(z) = [h(z) — q. h(z) +q],

the robust constraint reduces to:

~

h(z) +q <0.

Key observation: Conformal prediction transforms uncertain con-
straints into a tractable shifted deterministic constraint.

Remark. For classification constraints, feasibility is enforced by excluding

infeasible labels from C(z); the formulation is analogous.



Finite-Sample Feasibility Guarantee

Theorem. Finite-sample feasibility of C-MICL

Let F denote the feasible region of the C-MICL problem, defined
as

Fv ={(z.2) € X 1 g(x,2) <0, C(z) CV}.

Under the conditions of Lemma 3.1 and Assumption 4.1, for any
feasible solution (2/, 2’) € Fx, we have

P(h(z') €Y) > 1—a.

» The probability is taken over the randomness of the
calibration data.

» The guarantee holds for any feasible solution, not only the
optimum.

» The result is distribution-free and holds in finite samples.



Regression vs. Classification C-MICL

Regression C-MICL

Classification C-MICL

Constraint type
Prediction set
Uncertainty modeling
Conformal score

Feasibility
enforcement

Continuous constraint
h(z) e R
Interval-valued:

C(z) = h(z) £ qu(x)
Explicit uncertainty
model 4(x)

Absolute or scaled
residuals

h(z) 4+ qu(z) <0

Categorical constraint
(feasible / infeasible)

Label-valued: C(z) C Y

No separate uncertainty
model

Scores computed from
logits

Exclude infeasible labels
from C(z)

Key takeaway. Regression and classification are two instantiations of
the same C-MICL framework and enjoy identical finite-sample feasibility

guarantees.



Experimental Setup

> Tasks

» Regression constrained optimization

» Classification constrained optimization

» Constraints are unknown and learned from data
> Baselines

> MICL

> W-MICL

> C-MICL
» Prediction models

> Neural networks for h(z)

> An explicit uncertainty model @(z) for regression
» Evaluation metrics

» Feasibility violation rate

» Objective value

» Solution optimality gap

Goal. Evaluate whether C-MICL achieves finite-sample feasibility guar-
antees while maintaining competitive objective performance.



Main Results: Ground-Truth Feasibility
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Key observation. C-MICL consistently achieves the target feasibility
level 1 — « across all base prediction models, while prior MICL variants
exhibit substantial violations and high variability.
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Objective Quality vs. Computational Efficiency
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Key takeaway: C-MICL achieves a favorable trade-off between fea-
sibility guarantees, solution quality, and computational efficiency.
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