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Background I
▶ In many real-world optimization problems, decision variables

are mixed continuous and discrete, and constraints are
unknown or hard to model explicitly.

▶ True constraint depends on an unknown function:

h(x) ≤ 0, h(·) unknown

▶ Instead, we observe data:

D = {(xi, yi)}ni=1, yi ≈ h(xi)

▶ Constraint Learning (CL) [2, 1]:

h(x) ≈ ĥ(x)

where ĥ(·) is learned from data and embedded into
optimization.



Background II

▶ Suppose we solve the optimization problem using the learned
constraint:

min
x,z

f(x, z) s.t. ĥ(x) ≤ 0, (x, z) ∈ X

▶ The optimizer typically selects a solution near the constraint
boundary:

ĥ(x⋆) ≈ 0

▶ However, the learned constraint is imperfect:

ĥ(x) = h(x) + ε(x)

▶ Even small errors near the boundary can cause infeasibility:

ĥ(x⋆) ≤ 0 ̸⇒ h(x⋆) ≤ 0



Literature Review
▶ Mixed-Integer Constraint Learning (MICL) [7, 5]

▶ Learn surrogate constraint models from data
▶ Embed learned constraints into mixed-integer optimization
▶ Limitation:

▶ High computational cost
▶ No formal probabilistic feasibility guarantees

▶ Trust-Region/Filter-based Optimization [3]
▶ Iteratively refine learned constraints via local sampling
▶ Optimize only in regions where models are accurate
▶ Limitation:

▶ Strong assumptions on noise and smoothness
▶ Requires access to true constraint evaluations

▶ Conformal-Enhanced Optimization [4, 6]
▶ Use conformal prediction to quantify uncertainty
▶ Embed uncertainty sets into optimization problems
▶ Limitation:

▶ Focus on parameters or stochastic constraints
▶ Do not directly handle learned constraint functions
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Desired Feasibility Guarantee

▶ Let x⋆ be the solution obtained using learned constraints.
▶ What truly matters is feasibility in the real system:

h(x⋆) ≤ 0

▶ This paper seeks a probabilistic guarantee:

P
(
h(x⋆) ≤ 0

)
≥ 1− α

▶ The risk level α ∈ (0, 1) is user-specified.

Goal: Achieve finite-sample feasibility guarantees without specifying
uncertainty sets or distributions.



C-MICL

▶ C-MICL optimization problem:

min
x,z

f(x, z)

s.t. g(x, z) ≤ 0, (x, z) ∈ X ,

C(x) ⊆ Y

Key idea: Replace point constraints with conformal prediction sets,
and enforce feasibility against the worst case within the set.

Roadmap: Conformal prediction → Mixed-integer formulation →
Finite-sample feasibility guarantee



Conformal Prediction: Constructing C(x)

▶ Goal: construct a prediction set C(x) such that

P
(
h(x) ∈ C(x)

)
≥ 1− α

without assuming a distribution for h(x).
▶ Key idea: use a calibration dataset to quantify prediction

uncertainty.
▶ Given a learned model ĥ(x), define a nonconformity score:

si =
∣∣yi − ĥ(xi)

∣∣.
▶ Let q1−α be the (1− α)-quantile of {si}.

Interpretation: q1−α quantifies how large the prediction error can be with
probability at least 1− α.



Conformal Prediction: Constructing C(x)
▶ By construction, the quantile q1−α satisfies:

P
(∣∣h(x)− ĥ(x)

∣∣ ≤ q1−α

)
≥ 1− α.

▶ This implies:

−q1−α ≤ h(x)− ĥ(x) ≤ q1−α.

▶ Rearranging terms yields:

h(x) ∈
[
ĥ(x)− q1−α, ĥ(x) + q1−α

]
.

Conformal prediction set:

C(x) =
[
ĥ(x)− q1−α, ĥ(x) + q1−α

]
.

Remark. For regression constraints, C(x) is an interval; for classification
constraints, C(x) is a label set C(x) ⊆ {0, 1}.



Embedding Prediction Sets into Optimization
▶ From conformal prediction, we obtain a prediction set C(x)

with coverage guarantee: P
(
h(x) ∈ C(x)

)
≥ 1− α.

▶ To ensure safety, we enforce feasibility for all values in the
prediction set:

max
y∈C(x)

y ≤ 0.

▶ Regression constraints. For interval-valued sets

C(x) = [ ĥ(x)− q, ĥ(x) + q ],

the robust constraint reduces to:

ĥ(x) + q ≤ 0.

Key observation: Conformal prediction transforms uncertain con-
straints into a tractable shifted deterministic constraint.

Remark. For classification constraints, feasibility is enforced by excluding
infeasible labels from C(x); the formulation is analogous.



Finite-Sample Feasibility Guarantee

Theorem. Finite-sample feasibility of C-MICL
Let FN denote the feasible region of the C-MICL problem, defined
as

FN =
{
(x, z) ∈ X : g(x, z) ≤ 0, C(x) ⊆ Y

}
.

Under the conditions of Lemma 3.1 and Assumption 4.1, for any
feasible solution (x′, z′) ∈ FN , we have

P
(
h(x′) ∈ Y

)
≥ 1− α.

▶ The probability is taken over the randomness of the
calibration data.

▶ The guarantee holds for any feasible solution, not only the
optimum.

▶ The result is distribution-free and holds in finite samples.



Regression vs. Classification C-MICL

Regression C-MICL Classification C-MICL

Constraint type Continuous constraint
h(x) ∈ R

Categorical constraint
(feasible / infeasible)

Prediction set Interval-valued:
C(x) = ĥ(x)± q û(x)

Label-valued: C(x) ⊆ Y

Uncertainty modeling Explicit uncertainty
model û(x)

No separate uncertainty
model

Conformal score Absolute or scaled
residuals

Scores computed from
logits

Feasibility
enforcement

ĥ(x) + qû(x) ≤ 0 Exclude infeasible labels
from C(x)

Key takeaway. Regression and classification are two instantiations of
the same C-MICL framework and enjoy identical finite-sample feasibility
guarantees.



Experimental Setup
▶ Tasks

▶ Regression constrained optimization
▶ Classification constrained optimization
▶ Constraints are unknown and learned from data

▶ Baselines
▶ MICL
▶ W-MICL
▶ C-MICL

▶ Prediction models
▶ Neural networks for ĥ(x)
▶ An explicit uncertainty model û(x) for regression

▶ Evaluation metrics
▶ Feasibility violation rate
▶ Objective value
▶ Solution optimality gap

Goal. Evaluate whether C-MICL achieves finite-sample feasibility guar-
antees while maintaining competitive objective performance.



Main Results: Ground-Truth Feasibility

Key observation. C-MICL consistently achieves the target feasibility
level 1 − α across all base prediction models, while prior MICL variants
exhibit substantial violations and high variability.



Objective Quality vs. Computational Efficiency

Key takeaway: C-MICL achieves a favorable trade-off between fea-
sibility guarantees, solution quality, and computational efficiency.
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